Advertisement

Applied Biochemistry and Biotechnology

, Volume 165, Issue 7–8, pp 1494–1506 | Cite as

Large-Scale Production of Phospholipase D from Streptomyces racemochromogenes and Its Application to Soybean Lecithin Modification

  • Yozo NakazawaEmail author
  • Yoshimasa Sagane
  • Shin-ichiro Sakurai
  • Masataka Uchino
  • Hiroaki Sato
  • Kazuki Toeda
  • Katsumi Takano
Article

Abstract

Phospholipase D (PLD) catalyzes transphosphatidylation, causing inter-conversion of the polar head group of phospholipids and phospholipid hydrolysis. Previously, we cloned PLD103, a PLD with high transphosphatidylation activity, from Streptomyces racemochromogenes strain 10-3. Here, we report the construction of an expression system for the PLD103 gene using Streptomyces lividans as the host bacterium to achieve large-scale production. The phosphatidylcholine (PC) hydrolysis activity of S. lividans transformed with the expression plasmid containing the PLD103 gene was approximately 90-fold higher than that of the original strain. The recombinant PLD103 (rPLD103) found in the supernatant of the transformant culture medium was close to homogeneous. The rPLD103 was indistinguishable from the native enzyme in molecular mass and enzymatic properties. Additionally, rPLD103 had high transphosphatidylation activity on PC as a substrate in a simple aqueous one-phase reaction system and was able to modify the phospholipid content of soybean lecithin. Consequently, the expression system produces a stable supply of PLD, which can then be used in the production of phosphatidyl derivatives from lecithin.

Keywords

Phospholipase D Lecithin Phospholipid Soybean Transphosphatidylation Phospholipid modification Oil manufacture Phosphatidylcholine Phosphatidylserine Phosphatidylglycerol 

Notes

Acknowledgments

We thank Kazuaki Hirabayashi, Teppei Kikuchi, and Eri Yamamoto for their technical assistance.

Supplementary material

12010_2011_9370_Fig5_ESM.jpg (288 kb)
Fig. S1

(JPEG 288 kb)

12010_2011_9370_MOESM1_ESM.eps (1.8 mb)
High resolution image (EPS 1794 kb)

References

  1. 1.
    Doig, S. D., & Diks, R. M. M. (2003). Toolbox for modification of the lecithin headgroup. European Journal of Lipid Science and Technology, 105, 368–376.CrossRefGoogle Scholar
  2. 2.
    Ishii, F., & Nii, T. (2005). Properties of various phospholipid mixtures as emulsifiers or dispersing agents in nanoparticle drug carrier preparations. Colloids and Surfaces B: Biointerfaces, 41, 257–262.CrossRefGoogle Scholar
  3. 3.
    Miura, S., Tanaka, M., Suzuki, A., & Sato, K. (2004). Application of phospholipids extracted from bovine milk to the reconstitution of cream using butter oil. Journal of the American Oil Chemists’ Society, 81, 97–100.CrossRefGoogle Scholar
  4. 4.
    Nii, T., & Ishii, F. (2004). Properties of various phosphatidylcholines as emulsifiers or dispersing agents in microparticle preparations for drug carriers. Colloids and Surfaces B: Biointerfaces, 39, 57–63.CrossRefGoogle Scholar
  5. 5.
    Lee, Y., & Choe, E. (2008). Singlet oxygen quenching effects of phosphatidylcholine in emulsion containing sunflower oil. Journal of Food Science, 73, 506–511.CrossRefGoogle Scholar
  6. 6.
    Losso, J. N., Khachatryan, A., Ogawa, M., Godber, J. S., & Shih, F. (2005). Random centroid optimization of phosphatidylglycerol stabilized lutein-enriched oil-in-water emulsions at acidic pH. Food Chemistry, 92, 737–744.CrossRefGoogle Scholar
  7. 7.
    Shaban, H., Borrás, C., Viña, J., & Richter, C. (2002). Phosphatidylglycerol potently protects human retinal pigment epithelial cells against apoptosis induced by A2E, a compound suspected to cause age-related macula degeneration. Experimental Eye Research, 75, 99–108.CrossRefGoogle Scholar
  8. 8.
    Suzuki, S., Yamatoya, H., Sakai, M., Kataoka, A., Furushiro, M., & Kudo, S. (2001). Oral administration of soybean lecithin transphosphatidylated phosphatidylserine improves memory impairment in aged rats. The Journal of Nutrition, 131, 2951–2956.Google Scholar
  9. 9.
    Starks, M. A., Starks, S. L., Kingsley, M., Purpura, M., & Jäger, R. (2008). The effects of phosphatidylserine on endocrine response to moderate intensity exercise. Journal of the International Society of Sports Nutrition, 5, 11.CrossRefGoogle Scholar
  10. 10.
    Jäger, R., Purpura, M., & Kingsley, M. (2007). Phospholipids and sports performance. Journal of the International Society of Sports Nutrition, 4, 5.CrossRefGoogle Scholar
  11. 11.
    Jäger, R., Purpura, M., Geiss, K.-R., Weiß, M., Baumeister, J., Amatulli, F., et al. (2007). The effect of phosphatidylserine on golf performance. Journal of the International Society of Sports Nutrition, 4, 23.CrossRefGoogle Scholar
  12. 12.
    Yang, S. F., Freer, S., & Benson, A. A. (1967). Transphosphatidylation by phospholipase D. The Journal of Biological Chemistry, 242, 477–484.Google Scholar
  13. 13.
    Juneja, L. R., Kazuoka, T., Goto, N., Yamane, T., & Shimizu, S. (1989). Conversion of phosphatidylserine by various phospholipase D in the presence of L- or D-serine. Biochimica et Biophysica Acta, 1003, 277–283.Google Scholar
  14. 14.
    Nakazawa, Y., Uchino, M., Sagane, Y., Sato, H., & Takano, K. (2009). Isolation and characterization of actinomycetes strains that produce phospholipase D having high transphosphatidylation activity. Microbiological Research, 164, 43–48.CrossRefGoogle Scholar
  15. 15.
    Nakazawa, Y., Suzuki, R., Uchino, M., Sagane, Y., Kudo, T., Nagai, T., et al. (2010). Identification of actinomycetes producing phospholipase D with high transphosphatidylation activity. Current Microbiology, 60, 365–372.CrossRefGoogle Scholar
  16. 16.
    Nakazawa, Y., Sagane, Y., Kikuchi, T., Uchino, M., Nagai, T., Sato, H., et al. (2010). Purification, characterization and cloning of phospholipase D from Streptomyces racemochromogenes strain 10–3. The Protein Journal, 29, 598–608.CrossRefGoogle Scholar
  17. 17.
    Yokoyama, K., Nio, N., & Kikuchi, Y. (2004). Properties and application of microbial transglutaminase. Applied Microbiology and Biotechnology, 64, 447–454.CrossRefGoogle Scholar
  18. 18.
    Bhosale, S. H., Rao, M. M., & Deshpande, V. V. (1996). Molecular and industrial aspect of glucose isomerase. Microbiological Reviews, 60, 280–300.Google Scholar
  19. 19.
    Liu, C., Guo, L., Yao, C., Zhang, R., & Li, Y. (2008). Expression and purification of human vascular-endothelial-growth-factor-receptor-2 tyrosine kinase in Streptomyces for inhibitor screening. Biotechnology and Applied Biochemistry, 50, 113–119.CrossRefGoogle Scholar
  20. 20.
    Valilin, C., Ayala, J., García-Rivera, D., Jones, J., Rodríguez, C., González, L., et al. (2009). Immune response to Streptomyces lividans in mice: a potential vaccine vehicle against TB. The Open Vaccine Journal, 2, 85–91.CrossRefGoogle Scholar
  21. 21.
    Hong, B., Wu, B., & Li, Y. (2003). Production of C-terminal amidated recombinant salmon calcitonin in Streptomyces lividans. Applied Biochemistry and Biotechnology, 110, 113–123.CrossRefGoogle Scholar
  22. 22.
    Katz, E., Thompson, C. J., & Hopwood, D. A. (1983). Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. Journal of General Microbiology, 129, 2703–2714.Google Scholar
  23. 23.
    Hopwood, D. A., Hintermann, G., Kieser, T., & Wright, H. M. (1984). Integrated DNA sequences in three streptomycetes form related autonomous plasmids after transfer to Streptomyces lividans. Plasmid, 11, 1–16.CrossRefGoogle Scholar
  24. 24.
    Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F., & Hopwood, D. A. (2000). Introduction of DNA into Streptomyces, in practical Streptomyces genetics (pp. 229–252). Norwich: The John Innes Foundation.Google Scholar
  25. 25.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.CrossRefGoogle Scholar
  26. 26.
    Hirano, H., & Watanabe, T. (1990). Microsequencing of proteins electrotransferred onto immobilizing matrices from polyacrylamide gel electrophoresis: Application to an insoluble protein. Electrophoresis, 11, 573–580.CrossRefGoogle Scholar
  27. 27.
    Imamura, S., & Horiuti, Y. (1978). Enzymatic determination of phospholipase D activity with choline oxidase. Journal of Biochemistry, 83, 677–680.Google Scholar
  28. 28.
    Brigh, G. H., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.CrossRefGoogle Scholar
  29. 29.
    Ogino, C., Kanemasu, M., Hayashi, Y., Kondo, A., Shimura, N., Tokuyama, S., et al. (2004). Over-expression system for secretory phospholipase D by Streptomyces lividans. Applied Genetics and Molecular Biotechnology, 64, 823–828.Google Scholar
  30. 30.
    Carrea, G., D’Arrigo, P., Piergianni, V., Roncaglio, S., Secundo, F., & Servi, S. (1995). Purification and properties of two phospholipases D from Streptomyces sp. Biochimica et Biophysica Acta, 1255, 273–279.Google Scholar
  31. 31.
    Hatanaka, T., Negishi, T., Kubota-Akizawa, M., & Hagishita, T. (2002). Purification, characterization, cloning and sequencing of phospholipase D from Streptomyces septatus TH-2. Enzyme and Microbial Technology, 31, 233–241.CrossRefGoogle Scholar
  32. 32.
    Ogino, C., Negi, Y., Matsumiya, T., Nakaoka, K., Kondo, A., Kuroda, S., et al. (1999). Purification, characterization, and sequence determination of phospholipase D secreted by Streptoverticillium cinnamoneum. Journal of Biochemistry, 125, 263–269.Google Scholar
  33. 33.
    Shimbo, K., Iwasaki, Y., Yamane, T., & Ina, K. (1993). Purification and properties of phospholipase D from Streptomyces antibioticus. Bioscience Biotechnology and Biochemistry, 57, 1946–1948.CrossRefGoogle Scholar
  34. 34.
    Shuto, S., Ueda, S., Imamura, S., Fukukawa, K., Matsuda, A., & Ueda, T. (1987). A facile one-step synthesis of 5′-phosphatidylnucleosides by an enzymatic two-phase reaction. Tetrahedron Letters, 28, 199–202.CrossRefGoogle Scholar
  35. 35.
    Koga, T., & Terao, J. (1994). Antioxidant activity of a novel phosphatidyl derivative of vitamin E in lard and its model system. Journal of Agricultural and Food Chemistry, 42, 1291–1294.CrossRefGoogle Scholar
  36. 36.
    Nagao, A., Ishida, N., & Terao, J. (1991). Synthesis of 6-phosphatidyl-L-ascorbic acid by phospholipase D. Lipids, 26, 390–394.CrossRefGoogle Scholar
  37. 37.
    Kokusho, Y., Tsunoda, A., Kato, S., Machida, H., & Iwasaki, S. (1993). Production of various phosphatidylsaccharides by phospholipase D from Actinomadura sp. strain no. 362. Bioscience Biotechnology and Biochemistry, 57, 1302–1305.CrossRefGoogle Scholar
  38. 38.
    Takami, M., Hidaka, N., & Suzuki, Y. (1994). Phospholipase D-catalyzed synthesis of phosphatidyl aromatic compounds. Bioscience Biotechnology and Biochemistry, 58, 2140–2144.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yozo Nakazawa
    • 1
    Email author
  • Yoshimasa Sagane
    • 2
  • Shin-ichiro Sakurai
    • 3
  • Masataka Uchino
    • 3
  • Hiroaki Sato
    • 1
  • Kazuki Toeda
    • 1
  • Katsumi Takano
    • 3
  1. 1.Department of Food and Cosmetic Science, Faculty of BioindustryTokyo University of AgricultureAbashiriJapan
  2. 2.Sars International Centre for Marine Molecular BiologyBergenNorway
  3. 3.Department of Applied Biology and Chemistry, Faculty of Applied BioscienceTokyo University of AgricultureSetagayaJapan

Personalised recommendations