Advertisement

Applied Biochemistry and Biotechnology

, Volume 165, Issue 5–6, pp 1178–1187 | Cite as

Nanotechnology: Emerging Tool for Diagnostics and Therapeutics

  • Mainak Chakraborty
  • Surangna Jain
  • Vibha Rani
Article

Abstract

Nanotechnology is an emerging technology which is an amalgamation of different aspects of science and technology that includes disciplines such as electrical engineering, mechanical engineering, biology, physics, chemistry, and material science. It has potential in the fields of information and communication technology, biotechnology, and medicinal technology. It involves manipulating the dimensions of nanoparticles at an atomic scale to make use of its physical and chemical properties. All these properties are responsible for the wide application of nanoparticles in the field of human health care. Promising new technologies based on nanotechnology are being utilized to improve diverse aspects of medical treatments like diagnostics, imaging, and gene and drug delivery. This review summarizes the most promising nanomaterials and their application in human health.

Keywords

Nanotechnology Drug delivery Gene delivery Imaging Diagnostics 

References

  1. 1.
    Sahoo, S. K., Parveen, S., & Panda, J. J. (2007). Nanomedicine: NBM, 3, 20–31.CrossRefGoogle Scholar
  2. 2.
    Guo, S., & Wang, E. (2007). Analytical and Bioanalytical Chemistry, 598, 181–192.Google Scholar
  3. 3.
    Sandström, P., Boncheva, M., & Åkerman, B. (2003). Langmuir, 19, 7537–7543.CrossRefGoogle Scholar
  4. 4.
    Theron, J., Cloete, T. E., & Kwaadsteniet, M. D. (2010). Critical Reviews in Microbiology, 36, 318–339.CrossRefGoogle Scholar
  5. 5.
    Sperling, R. A., Gil, P. R., Zhang, F., Zanella, M., & Parak, W. J. (2008). Chemical Society Reviews, 37, 1896–1908.CrossRefGoogle Scholar
  6. 6.
    Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L., & Mirkin, C. A. (1997). Science, 277, 1078–1081.CrossRefGoogle Scholar
  7. 7.
    Gupta, A. K., & Gupta, M. (2005). Biomaterials, 26, 3995–4021.CrossRefGoogle Scholar
  8. 8.
    Lu, A. H., Salabas, E. L., & Schüth, F. (2007). Angewandte Chemie, International Edition, 46, 1222–1244.CrossRefGoogle Scholar
  9. 9.
    Perez, J. M., Josephson, L., & Weissleder, R. (2004). Chembiochem, 5, 261–264.CrossRefGoogle Scholar
  10. 10.
    Johng, H. M., Yoo, J. S., Yoon, T. J., Shin, H. S., Lee, B. C., Lee, C., et al. (2007). Evidence Based Complement Alternative Medicine, 4, 77–82.CrossRefGoogle Scholar
  11. 11.
    Alivisatos, A. P. (1996). Science, 271, 933–937.CrossRefGoogle Scholar
  12. 12.
    Larson, D. R., Zipfel, W. R., Williams, R. M., Clark, S. W., Bruchez, M. P., Wise, F. W., et al. (2003). Science, 300, 1434–1436.CrossRefGoogle Scholar
  13. 13.
    Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. K., & Nie, S. (2004). Nature Biotechnology, 22, 969–976.CrossRefGoogle Scholar
  14. 14.
    Seetharamappa, J., Yellappa, S., & Souza, F. D. (2006). Electrochemical Society Interface, 15, 23–26.Google Scholar
  15. 15.
    Liu, Z., Davis, C., Cai, W., He, L., Chen, X., & Dai, H. (2008). Proceedings of the National Academy of Sciences, 105, 1410–1415.CrossRefGoogle Scholar
  16. 16.
    Prato, M., Kostarelos, K., & Bianco, A. (2008). Accounts of Chemical Research, 41, 60–68.CrossRefGoogle Scholar
  17. 17.
    Lasic, D. D., Lipowsky, R., & Sackmann, E. (1995). Handbook Biology Physics, 1, 493–516.Google Scholar
  18. 18.
    Lautenschläger, H. (2006). In A. O. Barel, M. Paye, & H. I. Maibach (Eds.), Handbook of cosmetic science and technology, liposomes (pp. 155–163). Boca Raton: CRC Press.Google Scholar
  19. 19.
    Martina, M. S., Fortin, J. P., Ménager, C., Clément, O., Barratt, G., Madelmont, C. G., et al. (2005). Journal of the American Chemical Society, 127, 10676–10685.CrossRefGoogle Scholar
  20. 20.
    Tapec, R., Zhao, X. J., & Tan, W. (2002). Journal of Nanoscience and Nanotechnology, 2, 405–409.CrossRefGoogle Scholar
  21. 21.
    Yao, G., Wang, L., Wu, Y., Smith, J., Xu, J., Zhao, W., et al. (2006). Analytical and Bioanalytical Chemistry, 385, 518–524.CrossRefGoogle Scholar
  22. 22.
    Wang, L., Zhao, W., & Tan, W. (2008). Nano Research, 1, 99–115.CrossRefGoogle Scholar
  23. 23.
    Svenson, S., & Tomalia, D. A. (2005). Advances Drug Delivery Review, 57, 2106–2129.CrossRefGoogle Scholar
  24. 24.
    Fischer, M., & Vögtle, F. (1999). Angewandte Chemie, International Edition, 38, 884–905.CrossRefGoogle Scholar
  25. 25.
    Tomalia, D. A., Reyna, L. A., & Svenson, S. (2007). Biochemical Society Transactions, 35, 61–67.CrossRefGoogle Scholar
  26. 26.
    Farokhzad, O. C., & Langer, R. (2009). ACS Nano, 3, 16–20.CrossRefGoogle Scholar
  27. 27.
    Maeda, H., Wu, J., Sawaa, T., Matsumurab, Y., & Horic, K. (2000). Journal of Controlled Release, 65, 271–284.CrossRefGoogle Scholar
  28. 28.
    Uchegbu, I. F., & Schatzlein, A. G. (2010). Burger's medicinal chemistry, drug discovery and development, nanotechnology in drug delivery. Hoboken: Wiley.Google Scholar
  29. 29.
    Bhaskar, S., Tian, F., Stoeger, T., Kreyling, W., Fuente, J. M. D. L., Grazú, V., et al. (2010). Particle and Fibre Toxicology, 7, 3.CrossRefGoogle Scholar
  30. 30.
    Sinha, R., Kim, G. J., Nie, S., & Shin, D. M. (2006). Molecular Cancer Therapeutics, 5, 1909.CrossRefGoogle Scholar
  31. 31.
    Sahoo, S. K., Dilnawaz, F., & Krishnakumar, S. (2008). Drug Discovery Today, 13, 144–151.CrossRefGoogle Scholar
  32. 32.
    Hamman, J. H., Enslin, G. M., & Kotzé, A. F. (2005). BioDrugs, 19, 165–177.CrossRefGoogle Scholar
  33. 33.
    Arangoa, M. A., Campanero, M. A., Renedo, M. J., Ponchel, G., & Irach, J. M. (2001). Pharmaceutical Research, 18, 1521–1527.CrossRefGoogle Scholar
  34. 34.
    Arbós, P., Campanero, M. A., Arangoa, M. A., & Irache, J. M. (2004). Journal of Controlled Release, 96, 55–65.CrossRefGoogle Scholar
  35. 35.
    Esfanda, R., & Tomali, D. A. (2001). Drug Discovery Today, 6, 427–436.CrossRefGoogle Scholar
  36. 36.
    Meziani, M. J., Pathak, P., & Sun, Y. P. (2009). Nanotechnology in drug delivery. In Supercritical fluid technology for nanotechnology in drug delivery (Vol. 10). New York: Springer.Google Scholar
  37. 37.
    Staples, M., Daniel, K., Cima, M. J., & Langer, R. (2006). Pharmaceutical Research, 23, 847–863.CrossRefGoogle Scholar
  38. 38.
    Paciotti, G. F., Kingston, D. G. I., & Tamarkin, L. (2006). Drug Development Research, 67, 47–54.CrossRefGoogle Scholar
  39. 39.
    Wickline, S. A., Neubauer, A. M., Winter, P., Caruthers, S., & Lanza, G. (2006). Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 43.Google Scholar
  40. 40.
    Lanza, G. M., Wallace, K. D., & Scott, M. J. (1996). Circulation, 95, 3334–3340.Google Scholar
  41. 41.
    Na, H. B., Song, I. C., & Hyeon, T. (2009). Advanced Materials, 21, 2133–2148.CrossRefGoogle Scholar
  42. 42.
    Moghimi, S. M., Hunter, A. C., & Murray, J. C. (2005). The FASEB Journal, 19, 311–330.CrossRefGoogle Scholar
  43. 43.
    Lanza, G. M., Caruthers, R. L. S., & Wickline, S. A. (2003). Medicamundi, 47, 34–39.Google Scholar
  44. 44.
    Tran, T. D., Caruthers, S. D., Hughes, M., Marsh, J. N., Winter, P. M., Wickline, S. A., et al. (2007). International Journal of Nanomedicine, 2, 515–526.Google Scholar
  45. 45.
    Wickline, S. A., & Lanza, G. M. (2003). Circulation, 107, 1092.CrossRefGoogle Scholar
  46. 46.
    Bentolila, L. A., Michalet, X., Pinaud, F. F., Tsay, J. M., Doose, S., Li, J. J., et al. (2005). Discovery Medicine, 5, 213–218.Google Scholar
  47. 47.
    Smith, A. M., Ruan, G., Rhyner, M. N., & Nie, S. (2006). Annals of Biomedical Engineering, 34, 3–14.CrossRefGoogle Scholar
  48. 48.
    Iverson, N., Plourde, N., Chnari, E., Nackman, G. B., & Moghe, P. V. (2008). BioDrugs, 22, 1–10.CrossRefGoogle Scholar
  49. 49.
    Verma, I. M., & Weitzman, M. D. (2005). Annual Review of Biochemistry, 74, 711–738.CrossRefGoogle Scholar
  50. 50.
    Goverdhana, S., Puntel, M., Xiong, W., Zirger, J. M., Barcia, C., Curtin, J. F., et al. (2005). Molecular Therapy, 12, 189–211.CrossRefGoogle Scholar
  51. 51.
    Morille, M., Passirani, C., Vonarbourg, A., Clavreul, A., & Benoit, J. P. (2008). Biomaterials, 29, 3477–3496.CrossRefGoogle Scholar
  52. 52.
    Davis, S. S. (1997). Trends in Biotechnology, 15, 217–224.CrossRefGoogle Scholar
  53. 53.
    Pan, B., Cui, D., Sheng, Y., Ozkan, C., Gao, F., He, R., et al. (2007). Cancer Research, 67, 8156.CrossRefGoogle Scholar
  54. 54.
    Radu, D. R., Lai, C. Y., Jeftinija, K., Rowe, E. W., Jeftinija, S., & Lin, V. S. Y. (2004). Journal of the American Chemical Society, 126, 13216–13217.CrossRefGoogle Scholar
  55. 55.
    Tang, M. X., Redemann, C. T., & Szoka, F. C. (1996). Bioconjugate Chemistry, 7, 703–714.CrossRefGoogle Scholar
  56. 56.
    Lasic, D. D., & Papahadjopoulus, D. (1998). Medical applications of liposomes. Saara burgerhartstraat: Elsevier.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of BiotechnologyJaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations