Applied Biochemistry and Biotechnology

, Volume 165, Issue 3–4, pp 938–948 | Cite as

C–S Targeted Biodegradation of Dibenzothiophene by Stenotrophomonas sp. NISOC-04

  • Moslem Papizadeh
  • Mohammad Roayaei Ardakani
  • Hossein Motamedi
  • Iraj Rasouli
  • Mohammad Zarei
Article

Abstract

Crude oil-contaminated soil samples were gathered across Khuzestan oilfields (National Iranian South Oil Company, NISOC) consequently experienced a screening procedure for isolating C–S targeted dibenzothiophene-biodegrading microorganisms with previously optimized techniques. Among the isolates, a bacterial strain was selected due to its capability of biodegrading dibenzothiophene in a C–S targeted manner in aqueous phases and medium mostly consisting of separately biphasic water–gasoline. The 16S rDNA of the isolate was amplified using eubacterial-specific primers and then sequenced. Based on sequence data analysis, the microorganism, designated NISOC-04, clustered most closely with the members of the genus Stenotrophomonas. Gas chromatography indicated that Stenotrophomonas sp. NISOC-04 utilizes 82% of starting 0.8 mM dibenzothiophene within a 48-h-long exponential growth phase. Growth curve analysis revealed the inability of Stenotrophomonas sp. NISOC-04 to utilize dibenzothiophene (DBT) as the exclusive carbon or carbon/sulfur source. Gibbs’ assay showed no 2-hydroxy biphenyl accumulation, but HPLC confirmed the presence of 2-hydroxy biphenyl as the final product of DBT desulfurization. Under sulfur starvation, Stenotrophomonas sp. NISOC-04 produced a huge biomass with untraceable sulfur and utilized atmospheric insignificant sulfur levels.

Keywords

Biodesulfurization Dibenzothiophene Mineralization Stenotrophomonas C–S targeted biodegradation 

Notes

Acknowledgment

This work was supported by the Research vice Deputy, Shahid Chamran University of Ahvaz, and National Iranian South Oil Company (NISOC; R&D Department, the Department of chemicals, and the laboratorial complex). We warmly appreciate efforts made by Seyed Abbas Dibaj and Abdollah Ahmadiseresht, the expert staff of the Gas Chromatography (GC) Laboratory of NISOC. We are so grateful to Man Bock Gu and Ashok Mulchandani for managing the review process and Jamaledin Adel and the reviewers for their help in improving the content of this work.

References

  1. 1.
    Ollivier, B., & Magot, M. (2005). Petroleum microbiology (pp. 239–252). USA: Blackwell.Google Scholar
  2. 2.
    Mohebali, G., Ball, A. S., Rasekh, B., & Kaytash, A. (2007). Biodesulfurization potential of a newly isolated bacterium, Gordonia alkanivorans RIPI90A. Enzyme and Microbial Technology, 40, 578–584. doi:10.1016/j.enzmictec.2006.05.012.CrossRefGoogle Scholar
  3. 3.
    Garcia, C. I., Valencia, D., Klimova, T., Oviedo, R. R., Martınez, M. J. M., Balderas, R. G., et al. (2008). Proton affinity of S-containing aromatic compounds: Implications for crude oil hydrodesulfurization. Journal of Molecular Catalysis A Chemical, 281, 79–84.CrossRefGoogle Scholar
  4. 4.
    Rashidi, L., Mohebali, G., Towfighi, Jd, & Rasekh, B. (2006). Biodesulfurization of dibenzothiophene and its alkylated derivatives through the sulfur-specific pathway by the bacterium RIPI-S81. African Journal of Biotechnology, 5, 351–356.Google Scholar
  5. 5.
    Rashtchi, M., Mohebali, G. H., Akbarnejad, M. M., Towfighi, J., Rasekh, B., & Keytash, A. (2006). Analysis of biodesulfurization of model oil system by the bacterium, strain RIPI-22. Biochemical Engineering Journal, 29, 169–173.CrossRefGoogle Scholar
  6. 6.
    Furimskya, E., & Massoth, F. (1999). Deactivation of hydroprocessing catalysts. Catalysis Today, 52, 381–495.CrossRefGoogle Scholar
  7. 7.
    Kirkwood, K. M., Andersson, J. T., Fedorak, P. M., Foght, J. M., & Gray, M. R. (2007). Sulfur from benzothiophene and alkylbenzothiophenes supports growth of Rhodococcus sp. strain JVH1. Biodegradation, 18, 541–549.CrossRefGoogle Scholar
  8. 8.
    Kirkwood, K. M., Foght, J. M., & Gray, M. R. (2007). Selectivity among organic sulfur compounds in one- and two-liquid-phase cultures of Rhodococcus sp. strain JVH1. Biodegradation, 18, 473–480.CrossRefGoogle Scholar
  9. 9.
    Chang, J. H., Chang, Y. K., Cho, K., & Chang, H. N. (2000). Desulfurization of model and diesel oils by resting cells of Gordona sp. Biotechnology Letters, 22, 193–196.CrossRefGoogle Scholar
  10. 10.
    Chen, H., Wen-Juan, Z., Jian-Meng, C., Yu-Bei, C., & Wei, L. (2008). Desulfurization of various organic sulfur compounds and the mixture of DBT 4,6-DMDBT by Mycobacterium sp. ZD-19. Bioresource Technology, 99, 3630–3634.CrossRefGoogle Scholar
  11. 11.
    Delolmo, C. H., Alcon, A., Santos, V. E., & Garcia, O. F. (2005). Modeling the production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization: Influence of media composition. Enzyme and Microbial Technology, 37, 157–166.CrossRefGoogle Scholar
  12. 12.
    Denome, S. A., Stanley, D. C., Olson, E. S., & Young, K. D. (1993). Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. Journal of Bacteriology, 175, 6890–6901.Google Scholar
  13. 13.
    Duarte, G. F., Rosado, A. S., Seldin, L. De, Araujo, W., & Van Elsas, J. D. (2001). Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization (dsz) genes. Applied and Environmental Microbiology, 67, 1052–1062.CrossRefGoogle Scholar
  14. 14.
    Luo, M. F., Xing, J. M., Gou, Z. X., Li, S., Liu, H. Z., & Chen, J. Y. (2003). Desulfurization of dibenzothiophene by lyophilized cells of Pseudomonas delafieldii R-8 in the presence of dodecane. Biochemical Engineering Journal, 13, 1–6.CrossRefGoogle Scholar
  15. 15.
    Kirimura, K., Furuya, T., Nishii, Y., Ishii, Y., Kino, K., & Usami, S. (2001). Biodesulfurization of dibenzothiophene and its derivatives through the selective cleavage of carbon-sulfur bonds by a moderately thermophilic bacterium Bacillus subtilis Wu-S2b. Journal of Bioscience and Bioengineering, 91, 262–266.CrossRefGoogle Scholar
  16. 16.
    Ting, M., Guoqiang, L., Jian, L., Fenglai, L., & Rulin, L. (2006). Desulfurization of dibenzothiophene by Bacillus subtilis recombinants carrying dszABC and dszD genes. Biotechnology Letters, 28, 1095–1100.CrossRefGoogle Scholar
  17. 17.
    Fuli, L., Ping, U., Jinhui, F., Ling, M., Yuan, Z., Lailong, L., et al. (2003). Microbial desulfurization of gasoline in a Mycobacterium goodie X7B immobilized-cell system. Applied and Environmental Microbiology, 71, 276–281.Google Scholar
  18. 18.
    Jong, S. S., Young, S. K., Kyu, C., & Qing, X. L. (2006). Degradation of dibenzothiophene and carbazole by Arthrobacter sp. P1-1. International Biodeterioration and Biodegradation, 58, 36–43.CrossRefGoogle Scholar
  19. 19.
    Kimiko, W., Noda, K., Konishi, J., & Maruhashi, K. (2003). Desulfurization of 2,4,6,8-tetraethyl dibenzothiophene by recombinant Mycobacterium sp. strain MR65. Biotechnology Letters, 25, 1451–1456.CrossRefGoogle Scholar
  20. 20.
    Okada, H., Nobuhiko, N., Tadaatsu, N., & Kenji, M. (2002). Analyses of substrate specificity of the desulfurizing bacterium Mycobacterium sp. G3. Journal of Bioscience and Bioengineering, 93, 228–233.CrossRefGoogle Scholar
  21. 21.
    Li, W., Ying, Z., Miao, D. W., & Yao, S. (2005). Biodesulfurization of dibenzothiophene and other organic sulfur compounds by a newly isolated Microbacterium strain ZD-M2. FEMS Microbiology Letters, 247, 45–50.CrossRefGoogle Scholar
  22. 22.
    Papizadeh, M., Roayaei ardakani, M., Ebrahimipour, G., & Motamedi, H. (2010). Utilization of dibenzothiophene as sulfur source by Microbacterium sp. NISOC-06. World Journal of Microbiology and Biotechnology, 26, 1195–1200.CrossRefGoogle Scholar
  23. 23.
    Lee, I., Hee-Sung, B., Wook, R. H., Kyung-Suk, C., & Chang, Yk. (2005). Biocatalytic desulfurization of diesel oil in an air-lift reactor with immobilized Gordonia nitida CYKS1 Cells. Biotechnology, 21, 781–785.Google Scholar
  24. 24.
    Alves, L., Salgueiro, R., Rodrigues, C., Mesquita, E., Matos, J., & Gírio, F. M. (2005). Desulfurization of dibenzothiophene, benzothiophene, and other thiophene analogs by a newly isolated bacterium, Gordonia alkanivorans strain 1B. Applied Biochemistry and Biotechnology, 120, 199–208.CrossRefGoogle Scholar
  25. 25.
    Kilbane, J. J., Daram, A., Abbasian, J. C., & Kayser, K. J. (2002). Isolation and characterization of Sphingomonas sp. GTIN11 capable of carbazole metabolism in petroleum. Biochemical and Biophysical Research Communications, 297, 242–248.CrossRefGoogle Scholar
  26. 26.
    Gray, K. A., Mrachkoyz, T. G., & Squires, C. H. (2003). Biodesulfurization of fossil fuels. Current Opinion in Microbiology, 6, 229–235.CrossRefGoogle Scholar
  27. 27.
    Etemadifar, Z., Emtiazi, G., & Peimanfar, S. (2006). Removal of dibenzothiophene, biphenyl and phenol from waste by Trichosporon sp. African Journal of Biotechnology, 1, 72–76.Google Scholar
  28. 28.
    Caro, A., Boltes, K., Letón, P., & García-Calvo, E. (2008). Description of by-product inhibiton effects on biodesulfurization of dibenzothiophene in biphasic media. Biodegradation, 19, 599–611.CrossRefGoogle Scholar
  29. 29.
    Van der Ploeg, J. R., & Leisinger, E. E. T. (2001). Sulfonate-sulfur metabolism and its regulation in Escherichia coli. Archives of Microbiology, 176, 1–8.CrossRefGoogle Scholar
  30. 30.
    Seo, J. S., Keum, Y. S., Cho, I. K., & Li, Q. X. (2006). Degradation of dibenzothiophene and carbazole by Arthrobacter sp. P1-1. International Biodeterioration and Biodegradation, 58, 36–43.CrossRefGoogle Scholar
  31. 31.
    Etemadifar, Z., Emtiazi, G., & Christofi, N. (2008). Enhanced desulfurization activity in protoplast transformed Rhodococcus erythropolis. American-Eurasian Journal of Agricultural & Environmental Sciences, 3, 285–291.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Moslem Papizadeh
    • 1
  • Mohammad Roayaei Ardakani
    • 1
    • 2
  • Hossein Motamedi
    • 2
  • Iraj Rasouli
    • 3
  • Mohammad Zarei
    • 3
  1. 1.Biotechnology & Biology Research CenterShahid Chamran UniversityAhvazIran
  2. 2.Department of Biology, Faculty of SciencesShahid Chamran UniversityAhvazIran
  3. 3.Department of Biology, Faculty of SciencesShahed UniversityTehranIran

Personalised recommendations