In Vitro Antioxidant Potential of Some Soil Fungi: Screening of Functional Compounds and their Purification from Penicillium citrinum

Article

Abstract

Fungal isolates (Aspergillus wentii 1, A. wentii 2, Penicillium citrinum, Penicillium granulatum) were selected to study their in vitro antioxidant potential by various assay procedures. Czapek–Dox’s medium was selected for the growth of fungi as it supported the best antioxidant activity based on their EC50 values, P. citrinum was the best followed by P. granulatum, A. wentii 1, and A. wentii 2. The chromatographic analyses showed several compounds possessing antioxidant activity in the fungal extracts. Two such compounds were partially purified from P. citrinum which demonstrated potent antioxidant activity, equally effective or better than some of the standard antioxidants.

Keywords

Antioxidant activity Dot blot assay Fungi HPLC Aspergillus wentii Penicillium citrinum Penicillium granulatum 

Notes

Acknowledgment

Priyanka Chandra is thankful to UGC for the Rajiv Gandhi National Fellowship vide no. F.42 (SC)/2008 (SA-III).

References

  1. 1.
    Meghashri, S., Kumar, H. V., & Gopal, S. (2010). Antioxidant properties of a novel flavonoid from leaves of Leucas aspera. Food Chemistry, 122, 105–110.CrossRefGoogle Scholar
  2. 2.
    Singh, R. P., Sharad, S., & Kapur, S. (2004). Free radicals and oxidative stress in neurodegenerative diseases: relevance of dietary antioxidants. Journal Indian Academy Clinical Medicine, 5, 218–225.Google Scholar
  3. 3.
    Yang, J.-H., Lin, H.-C., & Mau, J.-L. (2002). Antioxidant properties of several commercial mushrooms. Food Chemistry, 77, 229–235.CrossRefGoogle Scholar
  4. 4.
    Devasagayam, T. P. A., & Kamat, J. P. (2002). Biological significance of singlet oxygen. Indian Journal of Experimental Biology, 40, 680–692.Google Scholar
  5. 5.
    Halliwell, B. (2000). Lipid peroxidation, antioxidants and cardiovascular disease: how should we move forward? Cardiovascular Research, 47, 410–418.CrossRefGoogle Scholar
  6. 6.
    Trouillas, P., Marsa, P., Siri, D., Lazzaron, R., & Duroux, J.-L. (2006). A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: the specificity of the 3-OH site. Food Chemistry, 97, 679–688.CrossRefGoogle Scholar
  7. 7.
    Pereira, J. A., Oliveira, I., Sousa, A., Valentaό, P., Andrade, P. B., Ferreira, I. C. F. R., et al. (2007). Walnut (Juglans regia L.) leaves: phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food and Chemical Toxicology, 45, 2287–2295.CrossRefGoogle Scholar
  8. 8.
    Bhattarai, H. D., Paudel, B., Hong, S. G., Lee, H. K., & Yim, J. H. (2008). Thin layer chromatography analysis of antioxidant constituents of lichens from Antarctica. Journal of Natural Medicine, 62, 481–484.CrossRefGoogle Scholar
  9. 9.
    Zhao, R., Xiang, Z. J., Ye, T. X., Yaun, J. Y., & Guo, X. Z. (2006). Antioxidant activities of Salvia miltiorrhiza and Panax notoginseng. Food Chemistry, 99, 767–774.CrossRefGoogle Scholar
  10. 10.
    Chang, L. W., Yen, W. J., Huang, S. C., & Duh, P. D. (2002). Antioxidant activity of sesame coat. Food Chemistry, 78, 347–354.CrossRefGoogle Scholar
  11. 11.
    Othman, A., Ismail, A., Ghani, N. A., & Adenan, I. (2007). Antioxidant capacity and phenolic content of cocoa beans. Food Chemistry, 100, 1523–1530.CrossRefGoogle Scholar
  12. 12.
    Kang, K. S., Yokozawa, T., Kim, H. Y., & Park, J. H. (2006). Study on the nitric oxide scavenging effects of ginseng and its compound. Journal of Agricultural and Food Chemistry, 54, 2558–2562.CrossRefGoogle Scholar
  13. 13.
    Singleton, V. L., Ortofehr, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrate and antioxidants by means of Folin–Ciocalteau reagent. Methods in Enzymology, 299, 152–178.CrossRefGoogle Scholar
  14. 14.
    Maron, D., & Ames, B. (1983). Revised methods for the Salmonella mutagenicity test. Mutation Research, 113, 173–215.Google Scholar
  15. 15.
    Ciapetti, G., Cenni, E., Pratelli, L., & Pizzoferrato, A. (1993). In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials, 14, 359–364.CrossRefGoogle Scholar
  16. 16.
    Behera, B. C., Verma, N., Sonone, A., & Makhija, U. (2006). Determination of antioxidative potential of lichen Usnea ghattensis in vitro. LWT Food Science and Technology, 39, 80–85.CrossRefGoogle Scholar
  17. 17.
    Chandra, P., & Arora, D. S. (2009). Antioxidant activity of fungi isolated from soil of different areas of Punjab, India. Journal of Applied and Natural Science, 1, 123–128.Google Scholar
  18. 18.
    Huang, W. Y., Cai, Y. Z., Hyde, K. D., Corke, H., & Sun, M. (2007). Endophytic fungi from Nerium oleander L (Apocynaceae): main constituents and antioxidant activity. World Journal of Microbiology & Biotechnology, 23, 1253–1263.CrossRefGoogle Scholar
  19. 19.
    Song, T. Y., & Yen, G. C. (2002). Antioxidant properties of Antrodia camphorata in submerged culture. Journal of Agricultural and Food Chemistry, 50, 3322–3327.CrossRefGoogle Scholar
  20. 20.
    Gebhardt, P., Dornberger, K., Gollmick, F. A., Grafe, N., Hartl, A., Gorls, H., et al. (2007). Quercinol, an anti-inflammatory chromene from the wood-rotting fungus Daedalea quercina (Oak Mazegill). Bioorganic & Medicinal Chemistry Letters, 17, 2558–2560.CrossRefGoogle Scholar
  21. 21.
    Bounatirou, S., Smiti, S., Miguel, M. G., Falerio, L., Rejeb, M. N., Neffati, M., et al. (2007). Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food Chemistry, 105, 146–155.CrossRefGoogle Scholar
  22. 22.
    Liua, X., Zhaoa, M., Wanga, J., Yangb, B., & Jiang, Y. (2008). Antioxidant activity of methanolic extract of emblica fruit (Phyllanthus emblica L.) from six regions in China. Journal of Food Composition and Analysis, 21, 219–228.CrossRefGoogle Scholar
  23. 23.
    Lo, K. M., & Cheung, P. C. K. (2005). Antioxidant activity of extracts from the fruiting bodies of Agrocybe aegerita var. alba. Food Chemistry, 89, 533–539.CrossRefGoogle Scholar
  24. 24.
    Lee, I.-H., Hung, Y.-H., & Chou, C.-C. (2007). Total phenolic and anthocyanin contents, as well as antioxidant activity, of black bean koji fermented by Aspergillus awamori under different culture conditions. Food Chemistry, 104, 936–942.CrossRefGoogle Scholar
  25. 25.
    Gursoy, N., Sarikurkcu, C., Cengiz, M., & Solak, M. H. (2009). Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food and Chemical Toxicology, 47, 2381–2388.CrossRefGoogle Scholar
  26. 26.
    Elzaawely, A. A., Xuan, T. D., Koyama, H., & Tawata, S. (2007). Antioxidant activity and contents of essential oil and phenolic compounds in flowers and seeds of Alpinia zerumbet (Pers.) B.L. Burtt. & R.M. Sm. Food Chemistry, 104, 1648–1653.CrossRefGoogle Scholar
  27. 27.
    Thitilertdecha, N., Teerawutgulrag, A., & Rakariyatham, N. (2008). Antioxidant and antibacterial activities of Nephelium lappaceum L. extracts. LWT Food Science and Technology, 41, 2029–2035.CrossRefGoogle Scholar
  28. 28.
    Arora, D. S., & Chandra, P. (2010). Assay of antioxidant potential of two Aspergillus isolates by different methods under various physio-chemical conditions. Brazilian Journal of Microbiology, 41, 465–477.CrossRefGoogle Scholar
  29. 29.
    Arora, D. S., & Chandra, P. (2010). Optimization of antioxidant potential Aspergillus terreus through different statistical approaches. Biotechnology and Applied Biochemistry, 57, 77–86.CrossRefGoogle Scholar
  30. 30.
    Sharma, R. K., Chandra, P., & Arora, D. S. (2010). Antioxidant properties and nutritional value of wheat straw bioproccessed Phanerocheate chrysosporium and Daedalea flavida. The Journal of General and Applied Microbiology, 56, 519–523.CrossRefGoogle Scholar
  31. 31.
    Moon, B. S., Ryoo, I. J., Yun, B. S., Bae, K. S., Lee, K. D., Yoo, I. D., et al. (2006). Glyscavins A, B and C, new phenolic glycoside antioxidants produced by a fungus Mycelia sterilia F020054. The Journal of Antibiotics, 59, 735–739.CrossRefGoogle Scholar
  32. 32.
    Rios, M. F., Pajan, C. M. G., Galan, R. H., Sanchez, A. J. M., & Callado, I. G. (2006). Synthesis and free radical scavenging activity of a novel metabolite from the fungus Colletotrichum gloeosporioides. Bioorganic & Medicinal Chemistry Letters, 16, 5836–5839.CrossRefGoogle Scholar
  33. 33.
    Harper, K., Arif, A., Ford, E. J., Strobel, G. A., Porco, J. A., Jr., Tomar, D. P., et al. (2003). Pestacin: a 1,3-dihydro isobenzofuran from Pestalotiopsis micropora possessing antioxidant and antimycotic activities. Tetrahedron, 59, 2471–2476.CrossRefGoogle Scholar
  34. 34.
    Yen, G. C., & Chang, Y. C. (1999). Medium optimization for the production of antioxidants from Aspergillus candidus. Journal of Food Protection, 62, 657–661.Google Scholar
  35. 35.
    Yen, G. C., & Lee, C. A. (1996). Antioxidant activity of extracts from molds. Journal of Food Protection, 59, 1327–1330.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Microbial Technology Laboratory, Department of MicrobiologyGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations