Advertisement

Applied Biochemistry and Biotechnology

, Volume 165, Issue 2, pp 611–623 | Cite as

Expression and Production of Therapeutic Recombinant Human Platelet-Derived Growth Factor-BB in Pleurotus eryngii

  • Jun-Hui Choi
  • Seung Kim
  • Kumar Sapkota
  • Se-Eun Park
  • Sung-Jun Kim
Article

Abstract

Recombinant human platelet-derived growth factor-BB (rhPDGF-BB) is widely used in many therapeutic applications. Until now, there has been no report on rhPDGF-BB expressed in fungi. In this study, we tested whether Pleurotus eryngii could support the expression of human therapeutic rhPDGF-BB protein. A binary vector pCAMBIA1304 containing the hPDGF-BB gene was constructed and introduced into P. eryngii via Agrobacterium tumefaciens-mediated transformation. The transformation of hPDGF-BB gene was confirmed by Southern blot and PCR, whereas the expression was confirmed by Western blot analysis. The recombinant hPDGF-BB reached a maximum expression level of 1.98% of total soluble protein in transgenic mycelia and was in dimeric form. A bioassay revealed that hPDGF-BB expressed in P. eryngii increased proliferation of NIH-3T3 cells similarly to standard material. These results suggest that P. eryngii can be a robust system for the production of human therapeutic proteins including the hPDGF-BB.

Keywords

Agrobacterium tumefaciens Human platelet-derived growth factor-BB Pleurotus eryngii Gene transfer Gene expression 

Notes

Acknowledgments

This research was supported by Technology Development Program for Agriculture and Forestry (20080329), Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea

References

  1. 1.
    Habenicht, A. J., Salbach, P., Janssen-Timmen, U., Blattner, C., & Schettler, G. (1992). Klinische Wochenschrift, 8, 53–59.Google Scholar
  2. 2.
    Kallianinen, L. K., Hirshberg, J., Marchant, B., & Rees, R. S. (2000). Plastic and Reconstructive Surgery, 6, 1243–1248.CrossRefGoogle Scholar
  3. 3.
    Li, W. L., Yamada, Y., Ueno, M., Nishikawa, S., Nishikawa, S. I., & Takakura, N. (2006). Journal of Biochemistry, 140, 267–273.CrossRefGoogle Scholar
  4. 4.
    Board, R., & Jayson, G. C. (2005). Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 8, 75–83.Google Scholar
  5. 5.
    Frederiksson, L., Li, H., & Eriksson, U. (2004). Cytokine & Growth Factor Reviews, 15, 197–204.CrossRefGoogle Scholar
  6. 6.
    Senet, P. (2004). Becaplermin gel (Regranex gel). Annales de Dermatologie et de Vénéréologie, 131, 351–358.CrossRefGoogle Scholar
  7. 7.
    Wieman, T. J. (1997). American Journal of Surgery, 176, 74S–79S.CrossRefGoogle Scholar
  8. 8.
    Steed, D. L. (1995). Journal of Vascular Surgery, 1, 71–81.CrossRefGoogle Scholar
  9. 9.
    Mandracchia, V. J., Sanders, S. M., & Frerichs, J. A. (2001). Clinics in Podiatric Medicine and Surgery, 18, 189–209.Google Scholar
  10. 10.
    Harrison-Balestra, C., Eaglstein, W. H., Falabela, A. F., & Kirsner, R. S. (2002). Dermatologic Surgery, 28, 755–759.CrossRefGoogle Scholar
  11. 11.
    Hom, D. B., & Manivel, J. C. (2003). The Laryngoscope, 113, 1566–1571.CrossRefGoogle Scholar
  12. 12.
    Hollinger, J. O., Hart, C. E., Hirsch, S. N., Lynch, S., & Friedlaender, G. E. (2007). The Journal of Bone and Joint Surgery. American Volume, 90, 48–54.CrossRefGoogle Scholar
  13. 13.
    Pahl, H. L. (1999). Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 18, 6853–6866.CrossRefGoogle Scholar
  14. 14.
    Peng, F., Dhillon, N. K., Yao, H., Zhu, X., Williams, R., & Buch, S. (2008). The European Journal of Neuroscience, 7, 1255–1264.CrossRefGoogle Scholar
  15. 15.
    van Steensel, L., Paridaens, D., Dingjan, G. M., van Daele, P. L., van Hagen, P. M., Kuijpers, R. W., et al. (2010). Investigative Ophthalmology & Visual Science, 2, 1002–1007.CrossRefGoogle Scholar
  16. 16.
    Hoppe, J., Weich, H. A., & Eichner, W. (1989). Biochemistry, 28, 2956–2960.CrossRefGoogle Scholar
  17. 17.
    Alexander, D. M., Hesson, T., Mannarino, A., Cable, M., & Dalie, B. L. (1992). Protein Expression and Purification, 3, 204–211.CrossRefGoogle Scholar
  18. 18.
    Karumuri, N. N., Gangireddy, S. R., Narala, V. R., Majee, S. S., Gunwar, S., & Reddy, R. C. (2007). Biotechnology Letters, 29, 1333–1339.CrossRefGoogle Scholar
  19. 19.
    Ostman, A., Rall, L., Hammacher, A., Wormstead, M. A., Coti, D., Valenzuela, P., et al. (1988). The Journal of Biological Chemistry, 31, 16202–16208.Google Scholar
  20. 20.
    Wang, Y., Xue, L., Li, Y., Zhu, Y., Yang, B., & Wang, X. (2009). Prikladnaia Biokhimiia i Mikrobiologiia, 2, 176–180.Google Scholar
  21. 21.
    Giese, N., May-Siroff, M., LaRochelle, W. J., van Wyke Coelingh, K., & Aaronson, S. A. (1989). Journal of Virology, 7, 3080–3086.Google Scholar
  22. 22.
    Nevalainen, K. M., Teo, V. S., & Bergquist, P. L. (2005). Trends in Biotechnology, 23, 468–474.CrossRefGoogle Scholar
  23. 23.
    Fernandez, J. M., & Hoeffler, J. P. (1999). Gene expression systems. San Diego: Academic.Google Scholar
  24. 24.
    Demain, A. L., & Vaishnav, P. (2009). Biotechnology Advances, 27, 297–306.CrossRefGoogle Scholar
  25. 25.
    Berends, E., Scholtmeijer, K., Wosten, H. A., Bosch, D., & Lugones, L. G. (2009). Trends in Microbiology, 10, 439–443.CrossRefGoogle Scholar
  26. 26.
    Rodriguez Estrada, A. E., & Royse, D. J. (2007). Bioresource Technology, 98, 1898–1906.CrossRefGoogle Scholar
  27. 27.
    Royse, D. J. (1999). Mushroom News, 47, 4–8.Google Scholar
  28. 28.
    Holsters, M., De Waele, D., Depicker, A., Messens, E., Van Montague, M., & Schell, J. (1978). Molecular & General Genetics: MGG, 163, 168–181.Google Scholar
  29. 29.
    Scott, O. R., & Bendich, A. J. (1997). Extraction of total cellular DNA from plant, algae and fungi. In S. B. Gelvin & R. A. Schilperoort (Eds.), Plant molecular biology manual, D1 (pp. 1–8). Dordrecht: Kluwer Academic.Google Scholar
  30. 30.
    Laemmli, U. K. (1970). Nature, 227, 680–685.CrossRefGoogle Scholar
  31. 31.
    Apte-Deshpande, A., Rewanwar, S., Kotwal, P., Raiker, V. A., & Padmanabhan, S. (2009). Biotechnology and Applied Biochemistry, 54, 197–205.CrossRefGoogle Scholar
  32. 32.
    Calderon-cacia, M., Tekamp-Olson, P., Allen, J., & George-Nascimento, C. (1992). Biochemical and Biophysical Research Communications, 187, 1193–1199.CrossRefGoogle Scholar
  33. 33.
    Punt, P. J., van Biezen, N., Conesa, A., Albers, A., Mangnus, J., & van den Hondel, C. (2002). Trends in Biotechnology, 5, 200–206.CrossRefGoogle Scholar
  34. 34.
    Gasser, B., & Mattanovich, D. (2007). Biotechnology Letters, 29, 201–212.CrossRefGoogle Scholar
  35. 35.
    De Groot, M. J. A., Bundock, P., Hooykaas, P. J. J., & Beijersbergen, A. G. M. (1998). Nature Biotechnology, 16, 839–842.CrossRefGoogle Scholar
  36. 36.
    Chen, X., Stone, M., Schlagnhaufer, C., & Romaine, C. P. (2000). Applied and Environmental Microbiology, 664, 510–513.Google Scholar
  37. 37.
    Michielse, C. B., Hookaas, P. J., van den Hondel, C. A., & Ram, A. F. (2005). Current Genetics, 48, 1–17.CrossRefGoogle Scholar
  38. 38.
    Wroblewski, T., Tomczakt, A., & Michelmore, R. (2005). Plant Biotechnology Journal, 3, 259–723.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jun-Hui Choi
    • 1
  • Seung Kim
    • 2
  • Kumar Sapkota
    • 1
    • 3
  • Se-Eun Park
    • 1
  • Sung-Jun Kim
    • 1
  1. 1.Department of BiotechnologyChosun UniversityGwangjuRepublic of Korea
  2. 2.Department of Alternative MedicineGwangju UniversityGwangjuRepublic of Korea
  3. 3.Central Department of ZoologyTribhuvan UniversityKirtipurNepal

Personalised recommendations