Applied Biochemistry and Biotechnology

, Volume 168, Issue 1, pp 1–9 | Cite as

Engineering a Metabolic Pathway for Isobutanol Biosynthesis in Bacillus subtilis

  • Xiaoqiang JiaEmail author
  • Shanshan Li
  • Sha Xie
  • Jianping WenEmail author


Isobutanol can be biosynthesized via α-ketoisovalerate catalyzed by heterologous keto acid decarboxylase (KDC) and alcohol dehydrogenase (ADH). In this work, isobutanol biosynthesis pathway was designed in Bacillus subtilis, a notable solvent-tolerant host. In order to do that, a plasmid pPKA expressing KDC and ADH under the control of a B. subtilis strong promoter P43 was constructed. Isobutanol was detected in the products of the recombinant B. subtilis harboring pPKA plasmid, whereas none was detected by the wild-type strain. Effects of the medium ingredients such as glucose concentration and valine addition, and operating parameters such as initial pH, inoculation volume, and medium work volume on isobutanol production were also investigated. Isobutanol production reached to the maximum of 0.607 g/L after 35-h cultivation under the conditions: glucose concentration of 3%, valine addition of 2%, initial pH of 7.0, inoculum of 1%, and work volume of 50 mL/250 mL. Though the isobutanol production by the recombinant was low, it was the first successful attempt to produce isobutanol in engineered B. subtilis, and the results showed its great potential as an isobutanol-producing cell factory.


Isobutanol Bacillus subtilis Genetic engineering Biosynthesis 



The authors appreciate the kind donation of the strain B. subtilis 168 and the plasmid pHP13 from Dr. Danier R. Zeigler and BGSC, the Ohio State University, OH, USA. The authors are also thankful to Prof. Pingsheng Ma, School of Chemical Engineering and Technology, Tianjin University, China, for the donation of the strain S. cerevisiae W303-1A. This research was financially supported by the National 973 Project of China (No. 2007CB714302), the National Natural Science Foundation of China (No. 20976124 and No. 20906070), the Innovation Foundation of Tianjin University, and the Program of Introducing Talents of Discipline to Universities (No. B06006).


  1. 1.
    Atsumi, S., Hanai, T., & Liao, J. C. (2008). Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 451, 86–90.CrossRefGoogle Scholar
  2. 2.
    Potera, C. (2009). Forging isobutanol with modified microbes. Genetic Engineering & Biotechnology News, 29, 18/21.Google Scholar
  3. 3.
    Dickinson, J. R., Harrison, S. J., & Hewlins, M. J. E. (1998). An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. The Journal of Biological Chemistry, 273, 25751–25756.CrossRefGoogle Scholar
  4. 4.
    Dickinson, J. R., Lanterman, M. M., Danner, D. J., Pearson, B. M., Sanz, P., Harrison, S. J., et al. (1997). A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. The Journal of Biological Chemistry, 272, 26871–26878.CrossRefGoogle Scholar
  5. 5.
    Fischer, C. R., Klein-Marcuschamer, D., & Stephanopoulos, G. (2008). Selection and optimization of microbial hosts for biofuels production. Metabolic Engineering, 10, 295–304.CrossRefGoogle Scholar
  6. 6.
    Li, W. F., Zhou, X. X., & Lu, P. (2004). Bottlenecks in the expression and secretion of heterologous proteins in Bacillus subtilis. Research in Microbiology, 155, 605–610.CrossRefGoogle Scholar
  7. 7.
    Yasbin, R. E., Wilson, G. A., & Young, F. E. (1975). Transformation and transfection in lysogenic strains of Bacillus subtilis: evidence for selective induction of prophage in competent Cells. Journal of Bacteriology, 121, 296–304.Google Scholar
  8. 8.
    Sambrook, J., & Russell, D. W. (2001). Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory: Cold Spring Harbor.Google Scholar
  9. 9.
    Anagnostopoulos, C., & Spizizen, J. (1961). Requirements for transformation in Bacillus subtilis. Journal of Bacteriology, 81, 741–746.Google Scholar
  10. 10.
    Gao, J., Xu, H., Li, Q. J., Feng, X. H., & Li, S. (2010). Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R, R-2,3-butanediol. Bioresource Technology, 101, 7076–7082.CrossRefGoogle Scholar
  11. 11.
    Qin, J. Y., Wang, X. W., Zheng, Z. J., Ma, C. Q., Tang, H. Z., & Xu, P. (2010). Production of L-lactic acid by a thermophilic Bacillus mutant using sodium hydroxide as neutralizing agent. Bioresource Technology, 101, 7570–7576.CrossRefGoogle Scholar
  12. 12.
    Connor, M. R., & Liao, J. C. (2009). Microbial production of advanced transportation fuels in non-natural hosts. Current Opinion in Biotechnology, 20, 307–315.CrossRefGoogle Scholar
  13. 13.
    Sentheshammuganathan, S., & Elsden, S. R. (1958). The mechanism of the formation of tyrosol by Saccharomyces cerevisiae. The Biochemical Journal, 69, 210–218.Google Scholar
  14. 14.
    Smith, K. M., Cho, K. M., & Liao, J. C. (2010). Engineering Corynebacterium glutamicum for isobutanol production. Applied Microbiology and Biotechnology, 87, 1045–1055.CrossRefGoogle Scholar
  15. 15.
    Nielsen, D. R., Leonard, E., Yoon, S. H., Tseng, H. C., Yuan, C., & Prather, K. L. J. (2009). Engineering alternative butanol production platforms in heterologous bacteria. Metabolic Engineering, 11, 262–273.CrossRefGoogle Scholar
  16. 16.
    Wang, P. Z., & Doi, R. H. (1984). Overlapping promoters transcribed by Bacillus subtilis σ55 and σ37 RNA polymerase holoenzymes during growth and stationary phases. The Journal of Biological Chemistry, 259, 8619–8625.Google Scholar
  17. 17.
    Zheng, J. T., Wang, S. L., & Yang, K. Q. (2007). Engineering a regulatory region of jadomycin gene cluster to improve jadomycin B production in Streptomyces venezuelae. Applied Microbiology and Biotechnolgy, 76, 883–888.CrossRefGoogle Scholar
  18. 18.
    Sun, H. G., Bie, X. M., Lu, F. X., Lu, Y. P., Wu, Y. D. L., & Lu, Z. X. (2009). Enhancement of surfactin production of Bacillus subtilis fmbR by replacement of the native promoter with the Pspac promoter. Canadian Journal of Microbiology, 55, 1003–1006.CrossRefGoogle Scholar
  19. 19.
    Görke, B., & Stülke, J. (2008). Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nature Review Microbiology, 6, 613–624.CrossRefGoogle Scholar
  20. 20.
    Blencke, H. M., Homuth, G., Ludwing, H., Mäder, U., Hecker, M., & Stülke, J. (2003). Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metabolic Engineering, 5, 133–149.CrossRefGoogle Scholar
  21. 21.
    Leyval, D., Uy, D., Delaunay, S., Goergen, J. L., & Engasser, J. M. (2003). Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. Journal of Biotechnology, 104, 241–252.CrossRefGoogle Scholar
  22. 22.
    Yuzbashev, T. V., Yuzbasheva, E. Y., Sobolevskaya, T. I., Laptev, I. A., Vybornaya, T. V., Larina, A. S., et al. (2010). Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica. Biotechnology and Bioengineering, 107, 673–682.CrossRefGoogle Scholar
  23. 23.
    Holtzclaw, W. D., & Chapman, L. F. (1975). Degradative acetolactate synthase of Bacillus subtilis: purification and properties. Journal of Bacteriology, 121, 917–922.Google Scholar
  24. 24.
    Fang, X. L., Feng, J. T., Zhang, W. G., Wang, Y. H., & Zhang, X. (2010). Optimization of growth medium and fermentation conditions for improved antibiotic activity of Xenorhabdus nematophila TB using a statistical approach. African Journal of Biotechnology, 9, 8068–8077.Google Scholar
  25. 25.
    Chung, B. K. S., Selvarasu, S., Andrea, C., Ryu, J., Lee, H., Ahn, J., et al. (2010). Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement. Microbioal Cell Factories, 9, 50–64.CrossRefGoogle Scholar
  26. 26.
    Leonard, E., Runguphan, W., O’Connor, S., & Prather, K. J. (2009). Opportunities in metabolic engineering to facilitate scalable alkaloid production. Nature Chemical Biology, 5, 292–300.CrossRefGoogle Scholar
  27. 27.
    Keasling, J. D., & Chou, H. (2008). Metabolic engineering delivers next-generation biofuels. Nature Biotechnology, 26, 298–299.CrossRefGoogle Scholar
  28. 28.
    Schleifer, K. H., Kraus, J., Dvorak, C., Kilpper-Balz, R., Collins, M. D., & Fischer, W. (1985). Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus gen. nov. Systematic and Applied Microbiology, 6, 183–195.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Biochemical Engineering, School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Key Laboratory of Systems BioengineeringTianjin University, Ministry of EducationTianjinPeople’s Republic of China

Personalised recommendations