Advertisement

Applied Biochemistry and Biotechnology

, Volume 165, Issue 1, pp 315–335 | Cite as

Molasses as a Whole Medium for Biosurfactants Production by Bacillus Strains and Their Application

  • Atipan Saimmai
  • Vorasan Sobhon
  • Suppasil ManeeratEmail author
Article

Abstract

Two types of biosurfactant (BS)-producing bacteria, Bacillus licheniformis TR7 and Bacillus subtilis SA9, were isolated from mangrove sediment in the south of Thailand. The BS production was done by using only molasses as a whole medium for growth and production. Under optimized conditions, the yields of TR7 and SA9 BS were found to be 3.30 and 3.78 g/l, respectively. It could reduce the surface tension of pure water to 28.5 and 29.5 mN/m, with the critical micelle concentrations of about 10 and 30 mg/l, respectively. Good thermal, pH, and salt stability were exhibited. Both BSs could recover oil more effectively than the two synthetic surfactants. In addition, TR7 and SA9 BS could enhance the solubility of polyaromatic hydrocarbons (PAHs). Thus, these BSs have the potential for the removal of oil and PAHs from the combined contaminated environment and facilitate its bioremediation. These studies indicate that molasses, as a renewable, relatively inexpensive and easily available resource, can be used for important biotechnological processes.

Keywords

Biosurfactant Mangrove sediment Bacillus spp. Molasses Oil recovery Polyaromatic hydrocarbon 

Notes

Acknowledgments

We are grateful to the Program Strategic Scholarships for Frontier Research Network for the Ph.D. Program Thai Doctoral degree from the Office of the Higher Education Commission, Thailand for providing a scholarship to A.S. This work was also funded by the Faculty of Agro-Industry and Graduate School, Prince of Songkla University.

References

  1. 1.
    Banat, I. M., Makkar, R. S., & Cameotra, S. S. (2000). Applied Microbiology and Biotechnology, 53, 495–508.CrossRefGoogle Scholar
  2. 2.
    Barkay, T., Navon-Venezia, S., Ron, E. Z., & Rosenberg, E. (1999). Applied and Environmental Microbiology, 65, 2697–2702.Google Scholar
  3. 3.
    Bernard, D., Pascaline, H., & Jeremie, J. J. (1996). Marine Pollution Bulletin, 32, 734–739.CrossRefGoogle Scholar
  4. 4.
    Cha, M., Lee, N., Kim, M., Kim, M., & Lee, S. (2008). Bioresource Technology, 99, 2192–2199.CrossRefGoogle Scholar
  5. 5.
    Cooper, D. G., & Goldenberg, B. G. (1987). Applied and Environmental Microbiology, 53, 224–229.Google Scholar
  6. 6.
    Das, K., & Mukherjee, A. K. (2007). Process Biochemistry, 42, 1191–1199.CrossRefGoogle Scholar
  7. 7.
    Das, K., & Mukherjee, A. K. (2007). Bioresource Technology, 98, 1339–1345.CrossRefGoogle Scholar
  8. 8.
    Das, P., Mukherjee, S., & Sen, R. (2008). Substrate dependent production of extracellular biosurfactant by a marine bacterium. Bioresource Technology, 100, 1015–1019.CrossRefGoogle Scholar
  9. 9.
    Desai, J. D., & Banat, I. M. (1997). Microbiology and Molecular Biology Reviews, 61, 47–64.Google Scholar
  10. 10.
    Ghojavand, H., Vahabzadeh, F., Roayaei, E., & Shahraki, A. K. (2008). Journal of Colloid and Interface Science, 324, 172–176.CrossRefGoogle Scholar
  11. 11.
    Ghurye, G. L., & Vipulanandan, C. (1994). Biotechnology and Bioengineering, 44, 661–666.CrossRefGoogle Scholar
  12. 12.
    Ilori, M. O., Amobi, C. J., & Odocha, A. C. (2005). Chemosphere, 61, 985–992.CrossRefGoogle Scholar
  13. 13.
    Jacques, R. J. S., Santos, E. C., Bento, F. M., Peralba, M. C. R., Selbach, P. A., Sa, E. L. S., et al. (2005). International Biodeterioration and Biodegradation, 56, 143–150.CrossRefGoogle Scholar
  14. 14.
    Joshi, S., Bharucha, C., & Desai, A. J. (2008). Bioresource Technology, 99, 4603–4608.CrossRefGoogle Scholar
  15. 15.
    Joshi, S., Bharucha, C., Jha, S., Yadav, S., Nerurkar, A., & Desai, A. J. (2008). Bioresource Technology, 99, 195–199.CrossRefGoogle Scholar
  16. 16.
    Ke, L., Wan, W. Q., Wong, T. W. Y., Wong, Y. S., & Tam, N. F. Y. (2003). Chemosphere, 52, 1581–1591.CrossRefGoogle Scholar
  17. 17.
    Kumar, M., Leona, V., De Sisto-Materanoa, A., Ilzinsa, O. A., et al. (2006). Zeitschrift Fur Naturforschung C-A Journal of Biosciences, 61, 203–212.Google Scholar
  18. 18.
    Kuyukina, M. S., Ivshina, I. B., Makarov, S. O., Litvinenko, L. V., Cunningham, C. J., & Philip, J. C. (2005). Environment International, 31, 155–161.CrossRefGoogle Scholar
  19. 19.
    Lee, Y. K. (2006). In Y. K. Lee (Ed.), Microbial biotechnology: principles and applications (p. 28). Hackensack: World Scientific.Google Scholar
  20. 20.
    Li, Y. M., Haddad, N. I. A., Yang, S. X., & Mu, B. Z. (2008). International Journal of Peptide Research and Therapeutics, 14, 229–235.CrossRefGoogle Scholar
  21. 21.
    Luna-Velasco, M. A., Esparza-Garcia, F., Canizares-Villanueva, R. O., & Rodriguez-Vazquez, R. (2007). Process Biochemistry, 42, 310–314.CrossRefGoogle Scholar
  22. 22.
    Makkar, R. S., & Cameotra, S. S. (2002). Journal of Surfactants and Detergents, 5, 11–17.CrossRefGoogle Scholar
  23. 23.
    Maneerat, S. (2009). Songklanakarin Journal of Science and Technology, 27, 1263–1272.Google Scholar
  24. 24.
    Maneerat, S., & Phetrong, K. (2007). Songklanakarin Journal of Science and Technology, 29, 781–791.Google Scholar
  25. 25.
    Morikawa, M., Hirata, T., & Imanaka, T. (2000). Biochimica et Biophysica Acta, 1488, 211–218.Google Scholar
  26. 26.
    Mukherjee, A. K., & Das, K. (2005). FEMS Microbiology Ecology, 54, 479–489.CrossRefGoogle Scholar
  27. 27.
    Mukherjee, S., Das, P., Sivapathasekaran, C., & Sen, R. (2009). Letters in Applied Microbiology, 48, 281–288.CrossRefGoogle Scholar
  28. 28.
    Nilsson, W. B., & Strom, M. S. (2002). Diseases of Aquatic Organisms, 48, 175–185.CrossRefGoogle Scholar
  29. 29.
    Nitschke, M., & Coast, S. G. (2007). Trends in Food Science and Technology, 18, 252–259.CrossRefGoogle Scholar
  30. 30.
    Nitschke, M., & Pastore, G. (2006). Bioresource Technology, 97, 336–341.CrossRefGoogle Scholar
  31. 31.
    Obayori, O. S., Ilori, M. O., Adebusoye, S. A., Oyetibo, G. O., et al. (2009). World Journal of Microbiology & Biotechnology, 25, 1615–1623.CrossRefGoogle Scholar
  32. 32.
    Olivera, N. L., Commendatore, M. G., Delgado, O., & Esteves, J. L. (2003). Journal of Industrial Microbiology & Biotechnology, 30, 542–548.CrossRefGoogle Scholar
  33. 33.
    Pereira, D. S. T., Silva, A. L. S., & Lopez, M. Q. (2010). Acta Scientiarum Technology, 32, 33–36.Google Scholar
  34. 34.
    Phalakornkule, C., & Tanasupawat, S. (2006). Journal of Culture Collections, 5, 46–57.Google Scholar
  35. 35.
    Phetrong, K., H-Kittikun, A., & Maneerat, S. (2008). Songklanakarin Journal of Science and Technology, 29, 769–779.Google Scholar
  36. 36.
    Rashedi, H., Assadi, M. M., Jamshidi, E., & Bonakdarpour, B. (2006). International Journal of Environmental Science and Technology, 3, 297–303.Google Scholar
  37. 37.
    Rashedi, H., Assadi, M. M., Bonakdarpour, B., & Jamshidi, E. (2005). International Journal of Environmental Science and Technology, 2, 59–62.Google Scholar
  38. 38.
    Rashedi, H., Jamshidi, E., Assadi, M. M., & Bonakdarpour, B. (2005). International Journal of Environmental Science and Technology, 2, 121–127.Google Scholar
  39. 39.
    Rodrigues, L. R., Teixeira, J. A., van der Meib, H. C., & Oliveira, R. (2006). Colloids and Surfaces. B: Biointerfaces, 53, 105–112.CrossRefGoogle Scholar
  40. 40.
    Sangster, J. (1989). Journal of Physical and Chemical Reference Data, 18, 3.CrossRefGoogle Scholar
  41. 41.
    Snape, I., Ferguson, S. H., Harvey, P. M., et al. (2006). Chemosphere, 63, 89–98.CrossRefGoogle Scholar
  42. 42.
    Sobrinho, H. B. S., Rufino, R. D., Luna, J. M., Salgueiro, A. A., Campos-Takaki, G. M., Leite, L. F. C., et al. (2008). Process Biochemistry, 43, 912–917.CrossRefGoogle Scholar
  43. 43.
    Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). Molecular Biology and Evolution, 24, 1596–1599.CrossRefGoogle Scholar
  44. 44.
    Thavasi, R., Jayalakshmi, S., Balasubramaniam, T., & Banat, I. M. (2008). World Journal of Microbiology & Biotechnology, 24, 917–925.CrossRefGoogle Scholar
  45. 45.
    Thavasi, R., Jayalakshmi, S., Balasubramanian, T., & Banat, I. M. (2007). Letters in Applied Microbiology, 45, 686–691.CrossRefGoogle Scholar
  46. 46.
    Thompson, J. D., Gibbons, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). Nucleic Acids Research, 25, 4876–4882.CrossRefGoogle Scholar
  47. 47.
    Willumsen, P. A. E., & Karlson, U. (1997). Biodegradation, 7, 415–423.CrossRefGoogle Scholar
  48. 48.
    Yin, B., Gua, J. D., & Wana, N. (2005). International Biodeterioration and Biodegradation, 56, 243–248.CrossRefGoogle Scholar
  49. 49.
    Zhao, B., Zhu, L., Li, W., & Chen, B. (2005). Chemosphere, 58, 33–40.CrossRefGoogle Scholar
  50. 50.
    Zhou, M., & Rhue, R. D. (2000). Environmental Science & Technology, 34, 1985–1990.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Atipan Saimmai
    • 1
  • Vorasan Sobhon
    • 1
  • Suppasil Maneerat
    • 1
    Email author
  1. 1.Department of Industrial Biotechnology, Faculty of Agro-IndustryPrince of Songkla UniversityHat YaiThailand

Personalised recommendations