Applied Biochemistry and Biotechnology

, Volume 165, Issue 1, pp 235–242 | Cite as

Growth Inhibition and Induction of Stress Protein, GroEL, of Bacillus cereus Exposed to Antibacterial Peptide Isolated from Bacillus subtilis SC-8

  • Nam Keun Lee
  • In-Cheol Yeo
  • Joung Whan Park
  • Young Tae HahmEmail author


This study was conducted to investigate the antibacterial effect of BSAP-254 on Bacillus cereus with the induced stress proteins. The BSAP-254 is an antimicrobial peptide isolated from soybean-fermenting bacteria, Bacillus subtilis SC-8. It had a narrow spectrum of activity against B. cereus group. The growth inhibitory effect of BSAP-254 (50 μg/mL) reduced the population of B. cereus from >108 to 104 colony-forming units per milliliter within 30 min. In B. cereus exposed to BSAP-254, 14 intracellular proteins were differentially expressed as determined by 2-DE coupled with MS. Of the differentially expressed proteins identified, the stress protein GroEL, which is heat shock protein, was induced in B. cereus exposed to antibacterial peptide.


Antibacterial effect Bacillus subtilis Bacillus cereus Soybean-fermenting bacteria Food-borne pathogenic bacteria Heat shock protein GroEL 



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (no. 2009–0073489).


  1. 1.
    Raso, J., Góngora-Nieto, M. M., Barbosa-Cánovas, G. V., & Swanson, B. G. (1998). International Journal of Food Microbiology, 44, 125–132.CrossRefGoogle Scholar
  2. 2.
    Rowan, N. J., MacGregor, S. J., Anderson, J. G., Fouracre, R. A., McIlvaney, L., & Farish, O. (1999). Applied and Environmental Microbiology, 65, 1312–1315.Google Scholar
  3. 3.
    Kim, C., Hung, Y. C., & Brackett, R. E. (2000). International Journal of Food Microbiology, 61, 199–207.CrossRefGoogle Scholar
  4. 4.
    Coroller, L., Leguerinel, I., & Mafart, P. (2001). Applied and Environmental Microbiology, 67, 317–322.CrossRefGoogle Scholar
  5. 5.
    Valero, M., Sarrías, J. A., Alvarez, D., & Salmerón, M. C. (2006). Food Microbiology, 23, 367–371.CrossRefGoogle Scholar
  6. 6.
    Cho, M., Choi, Y., Park, H., Kim, K., Woo, G. J., & Park, J. (2007). Journal of Food Protection, 70, 97–101.Google Scholar
  7. 7.
    Akbas, M. Y., & Ozdemir, M. (2008). Food Microbiology, 25, 386–391.CrossRefGoogle Scholar
  8. 8.
    Pol, I. E., van Arendonk, W. G., Mastwijk, H. C., Krommer, J., Smid, E. J., & Moezelaar, R. (2001). Applied and Environmental Microbiology, 67, 1693–1699.CrossRefGoogle Scholar
  9. 9.
    Park, Y. B., Guo, J. Y., Rahman, S. M., Ahn, J., & Oh, D. H. (2009). Journal of Food Science, 74, M185–M189.CrossRefGoogle Scholar
  10. 10.
    Cladera-Olivera, F., Caron, G. R., & Brandelli, A. (2004). Letters in Applied Microbiology, 38, 251–256.CrossRefGoogle Scholar
  11. 11.
    Kim, P. I., Bai, H., Bai, D., Chae, H., Chung, S., Kim, Y., et al. (2004). Journal of Applied Microbiology, 97, 942–949.CrossRefGoogle Scholar
  12. 12.
    Straus, S. K., & Hancock, R. E. W. (2006). Biochimica et Biophysica Acta, 1758, 1215–1223.CrossRefGoogle Scholar
  13. 13.
    Sieprawska-Lupa, M., Mydel, P., Krawczyk, K., Wójcik, K., Puklo, M., Lupa, B., et al. (2004). Antimicrobial Agents and Chemotherapy, 48, 4673–4679.CrossRefGoogle Scholar
  14. 14.
    Campos, M. A., Vargas, M. A., Regueiro, V., Llompart, C. M., Albertí, S., & Bengoechea, J. A. (2004). Infection and Immunity, 72, 7107–7114.CrossRefGoogle Scholar
  15. 15.
    Gatzeva-Topalova, P. Z., May, A. P., & Sousa, M. C. (2005). Biochemistry, 44, 5328–5338.CrossRefGoogle Scholar
  16. 16.
    Fehri, L. F., Sirand-Pugnet, P., Gourgues, G., Jan, G., Wróblewski, H., & Blanchard, A. (2005). Antimicrobial Agents and Chemotherapy, 49, 4154–4165.CrossRefGoogle Scholar
  17. 17.
    Lee, N. K., Yeo, I. C., Park, J. W., Kang, B. S., & Hahm, Y. T. (2010). Journal of Bioscience and Bioengineering, 110, 298–303.CrossRefGoogle Scholar
  18. 18.
    Sivapathasekaran, C., Mukherjee, S., Samanta, R., & Sen, R. (2009). Analytical and Bioanalytical Chemistry, 395, 845–854.CrossRefGoogle Scholar
  19. 19.
    Lee, S. K., Kim, Y., Kim, S. S., Lee, J. H., Cho, K., Lee, S. S., et al. (2009). Proteomics, 9, 4389–4405.CrossRefGoogle Scholar
  20. 20.
    Stein, T. (2005). Molecular Microbiology, 56, 845–857.CrossRefGoogle Scholar
  21. 21.
    Morikawa, M., Hirata, Y., & Imanaka, T. (2000). Biochimica et Biophysica Acta, 1488, 211–2118.Google Scholar
  22. 22.
    Zhang, L., Dhillon, P., Yan, H., Farmer, S., & Hancock, R. E. (2000). Antimicrobial Agents and Chemotherapy, 44, 3317–3321.CrossRefGoogle Scholar
  23. 23.
    Chen, H., Wang, L., Su, C. X., Gong, G. H., Wang, P., & Yu, Z. L. (2008). Letters in Applied Microbiology, 47, 180–186.CrossRefGoogle Scholar
  24. 24.
    Narberhaus, F. (1999). Molecular Microbiology, 31, 1–8.CrossRefGoogle Scholar
  25. 25.
    Periago, P. M., van Schaik, W., Abee, T., & Wouters, J. A. (2002). Applied and Environmental Microbiology, 68, 3486–3495.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nam Keun Lee
    • 1
  • In-Cheol Yeo
    • 1
  • Joung Whan Park
    • 1
  • Young Tae Hahm
    • 1
    Email author
  1. 1.Department of Biotechnology (BK21 Program)Chung-Ang UniversityAn-seongRepublic of Korea

Personalised recommendations