Advertisement

Banana Peel: A Potential Substrate for Laccase Production by Aspergillus fumigatus VkJ2.4.5 in Solid-State Fermentation

  • V. Vivekanand
  • Pallavi Dwivedi
  • Nidhi Pareek
  • Rajesh P. SinghEmail author
Article

Abstract

In solid-state fermentation, among various solid supports evaluated, banana peel was found to be an ideal support and resulted into higher levels of laccase (6281.4 ± 63.60 U l−1) along with notable levels of manganese peroxidase production (1339.0 ± 131.23 U l−1) by Aspergillus fumigatus VkJ2.4.5. Maximum levels of laccase was achieved under derived conditions consisting of 80% of moisture level, 6 days of incubation period, 6% inoculum level, and an aeration level of 2.5 l min−1. A column-tray bioreactor was designed to scale up and economize the enzyme production in three successive cycles of fermentation using the same fungal biomass. Thermal and pH stability profiles revealed that enzyme was stable up to 50°C and at varying pH range from 5–9 for up to 2 h. The apparent molecular weight of laccase was found to be 34 ± 1 kDa. MALDI-TOF/TOF analysis of the protein showed significant homology with maximum identity of 67% to other laccases reported in database.

Keywords

Solid-state fermentation Aspergillus fumigatus Banana peel Laccase Manganese peroxidase Bioreactor 

Notes

Acknowledgements

National Doctoral Fellowship of All India Council for Technical Education, New Delhi, awarded to first author and a Senior Research Fellowship of Council of Scientific and Industrial Research, New Delhi, India awarded to second and third authors are gratefully acknowledged.

References

  1. 1.
    Johannes, C., & Majcherczyk, A. (2000). Journal of Biotechnology, 78, 193–199.CrossRefGoogle Scholar
  2. 2.
    Palmieri, G., Giardina, P., Desderio, B., Marzullo, L., Giamberini, M., & Sannia, G. (1993). Enzyme and Microbial Technology, 16, 151–158.CrossRefGoogle Scholar
  3. 3.
    Gnanamani, A., Jayaprakashvel, M., Arulmani, M., & Sadulla, S. (2006). Enzyme and Microbial Technology, 38, 1017–1021.CrossRefGoogle Scholar
  4. 4.
    Koroleva, O. V., Stepanova, E. V., Gavrilova, V. P., Biniukov, V. I., Jaropolov, A. I., & Varfolomeyey, S. D. (1999). Applied Biochemistry and Biotechnology, 76, 115–127.CrossRefGoogle Scholar
  5. 5.
    Thurstonn, C. F. (1994). Microbiology, 140, 19–26.CrossRefGoogle Scholar
  6. 6.
    Glenn, J. K., & Gold, M. K. (1985). Archives of Biochemistry and Biophysics, 242, 320–341.CrossRefGoogle Scholar
  7. 7.
    Tein, M., & Kirk, T. K. (1983). Science, 221, 661–663.CrossRefGoogle Scholar
  8. 8.
    Pradeep, V., & Datta, M. (2002). Applied Biochemistry and Biotechnology, 102, 109–118.CrossRefGoogle Scholar
  9. 9.
    Schlosser, D., Grey, R., & Fritsche, W. (1997). Applied Microbiology and Biotechnology, 47, 412–418.CrossRefGoogle Scholar
  10. 10.
    Krutz, M. B., & Champ, S. P. (1982). Journal of Bacteriology, 151, 1338–1345.Google Scholar
  11. 11.
    Froehner, S. C., & Eriksson, K. E. L. (1974). Journal of Bacteriology, 120, 458–465.Google Scholar
  12. 12.
    Minuth, W., Klischeis, M. K., & Essar, K. (1978). European Journal of Biochemistry, 90, 73–82.CrossRefGoogle Scholar
  13. 13.
    Berka, R. M., Schneider, P., Golightly, E. J., Brown, S. H., Madden, M., Brown, K. M., et al. (1997). Applied and Environmental Microbiology, 63, 3151–3157.Google Scholar
  14. 14.
    Litvintseva, A. P., & Henson, J. M. (2002). Applied and Environmental Microbiology, 68, 1305–1311.CrossRefGoogle Scholar
  15. 15.
    Gianfreda, L., Xu, F., & Bollag, J. M. (1999). Bioremediation Journal, 3, 1–25.CrossRefGoogle Scholar
  16. 16.
    Monteiro, M. C., & de Carvalho, M. E. A. (1998). Applied Biochemistry and Biotechnology, 70, 983–993.CrossRefGoogle Scholar
  17. 17.
    Yaropolov, A. I., Skorobogatko, O. V., Varatonov, S. S., & Varfolomeyev, S. D. (1994). Applied Biochemistry and Biotechnology, 49, 257–280.CrossRefGoogle Scholar
  18. 18.
    Taspinar, A., & Kolankaya. (1998). Bulletin of Environmental Contamination and Toxicology, 61, 15–21.CrossRefGoogle Scholar
  19. 19.
    Milstein, O., Haars, A., Majcherczyk, A., Trojanowski, J., Tautz, D., & Zanker, H. (1988). Water Science and Technology, 20, 161–170.Google Scholar
  20. 20.
    Bajpai, P. (1999). Biotechnology Progress, 15, 147–157.CrossRefGoogle Scholar
  21. 21.
    Bermek, H., Li, K., & Eriksson, K. L. (2002). Bioresource Technology, 85, 249–252.CrossRefGoogle Scholar
  22. 22.
    Kondo, R., Harazono, K., & Sakai, K. (1994). Applied and Environmental Microbiology, 60, 4359–4363.Google Scholar
  23. 23.
    Paice, M. G., Reid, I. D., Bourbonnais, R., Archibald, F. S., & Jurasek, L. (1993). Applied and Environmental Microbiology, 59, 260–265.Google Scholar
  24. 24.
    Addleman, K., Dumonceaux, T., Paice, M. G., Bourbonnais, R., & Archibald, F. S. (1995). Applied and Environmental Microbiology, 61, 3687–3694.Google Scholar
  25. 25.
    Nakamura, Y., Sungusia, M. G., Sawada, T., & Kuwahara, M. (1999). Journal of Bioscience and Bioengineering, 88, 41–47.CrossRefGoogle Scholar
  26. 26.
    Pandey, A., Soccol, C. R., & Mitchell, D. (2000). Process Biochemistry, 35, 1153–1169.CrossRefGoogle Scholar
  27. 27.
    Centre for Monitoring Indian Economy (ICME) Pvt. Ltd. Andheri, Mumbai-400 093: 2001.Google Scholar
  28. 28.
    Essien, J. P., Akpan, E. J., & Essien, E. P. (2005). Bioresource Technology, 96, 1451–1456.CrossRefGoogle Scholar
  29. 29.
    Mitchell, D. A., Oscar, F., & Krieger, N. (2003). Biochemical Engineering Journal, 13, 137–147.CrossRefGoogle Scholar
  30. 30.
    Stredansky, M., & Conti, E. (1999). Process Biochemistry, 34, 581–587.CrossRefGoogle Scholar
  31. 31.
    Koroleva, O. V., Stepanova, E., Gavrilova, V. P., Yakovleva, S., Landesman, E. O., Yavmetdinov, I. S., et al. (2002). Journal of Bioscience and Bioengineering, 93, 449–455.Google Scholar
  32. 32.
    Ellaiah, P., Adinarayana, K., Bhavani, Y., Padmaja, P., & Srinivasulu, B. (2002). Process Biochemistry, 38, 615–620.CrossRefGoogle Scholar
  33. 33.
    Ellaiah, P., Srinivsulu, B., & Adinarayana, K. (2004). Process Biochemistry, 39, 529–534.CrossRefGoogle Scholar
  34. 34.
    Gabriel, B. L. (1982). Biological scanning electron microscopy. New York: Von Nostrand Reinhold Company.Google Scholar
  35. 35.
    Laemmli, U. K. (1970). Nature, 277, 680–685.CrossRefGoogle Scholar
  36. 36.
    Vasdev, K., Dhawan, S., Kapoor, R. K., & Kuhad, R. C. (2005). Fungal Genetics and Biology, 42, 684–693.CrossRefGoogle Scholar
  37. 37.
    Donham, R. T., Morin, D., Jewell, W. T., Burns, S. A., Mitchell, A. E., Lame, M. W., et al. (2005). Aquatic Toxicology, 71, 203–214.CrossRefGoogle Scholar
  38. 38.
    de-souza Cruz, P. B., Freer, J., Siika-aho, M., & Ferraz, A. (2004). Enzyme and Microbial Technology, 34, 228–234.CrossRefGoogle Scholar
  39. 39.
    Castillo, M. P., Stenstrom, J., & Ander, P. (1994). Analytical Biochemistry, 218, 394–399.CrossRefGoogle Scholar
  40. 40.
    Pandey, A., Soccol, C. R., Rodriguez-Leon, & Nigam, P. (2001). Solid state fermentation in biotechnology, fundamental and application. New Delhi: Asiatech Publisher Inc.Google Scholar
  41. 41.
    Lonsane, B. K., Ghildyal, N. P., Budiatman, S., & Ramakrishna, S. V. (1985). Enzyme and Microbial Technology, 7, 258–265.CrossRefGoogle Scholar
  42. 42.
    Levin, L., Herrmann, C., & Papinutti, V. L. (2008). Biochemical Engineering Journal, 39, 207–214.CrossRefGoogle Scholar
  43. 43.
    Xu, C., Ma, F., & Zhang, X. (2009). Journal of Bioscience and Bioengineering, 108, 372–375.CrossRefGoogle Scholar
  44. 44.
    Zeng, X., Cai, Y., Liaoa, X., Zeng, X., Li, W., & Dabing Zhang, D. (2011). Journal of Hazardous Materials, 187, 517–525.CrossRefGoogle Scholar
  45. 45.
    Osma, J. F., Toca Herrera, J. L. T., & Couto, S. R. (2007). Dyes and Pigments, 75, 32–37.CrossRefGoogle Scholar
  46. 46.
    Elisashvili, V., Kachlishvili, E., & Penninckx, M. (2008). Journal of Industrial Microbiology & Biotechnology, 35, 1531–1538.CrossRefGoogle Scholar
  47. 47.
    Sathishkumar, P., Murugesan, K., & Palvannan, T. (2010). Journal of Basic Microbiology, 50, 360–367.CrossRefGoogle Scholar
  48. 48.
    Kumar, D., Jain, V. K., Shanker, G., & Srivastava, A. (2003). Process Biochemistry, 38, 1731–1738.CrossRefGoogle Scholar
  49. 49.
    Ramachandran, S., Patel, A. K., Nampoothiri, K. M., Francis, F., Nagy, V., Szakacs, G., et al. (2004). Bioresource Technology, 93, 169–174.CrossRefGoogle Scholar
  50. 50.
    Sabu, A., Swati, C., & Pandey, A. (2006). Process Biochemistry, 41, 575–580.CrossRefGoogle Scholar
  51. 51.
    Chong, T. M., Abdullah, M., Lai, O. M., Aini, F. M. N., & Lajis, N. H. (2005). Process Biochemistry, 40, 3397–3405.CrossRefGoogle Scholar
  52. 52.
    Djekrif-Dakhmouche, S., Gheribi-Aoulmi, Z., Meraihi, Z., & Bennamoun, L. (2006). Journal of Food Engineering, 73, 190–197.CrossRefGoogle Scholar
  53. 53.
    Sethuraman, A., Akin, D. E., & Eriksson, K. E. (1999). Applied Microbiology and Biotechnology, 52, 689–697.CrossRefGoogle Scholar
  54. 54.
    Coll, P. M., Tabernero, C., Santamaria, R., & Perez, P. (1993). Applied and Environmental Microbiology, 59, 4129–4135.Google Scholar
  55. 55.
    Eggert, C., Temp, U., & Eriksson, K. E. L. (1996). Applied and Environmental Microbiology, 62, 1151–1158.Google Scholar
  56. 56.
    Martinez-Alvarez, O., Montero, P., & Gomez-Guillen, C. (2008). Food Chemistry, 108, 624–632.CrossRefGoogle Scholar
  57. 57.
    Koroleva, O. V., Stepanova, E. V., Binukov, V. I., Timofeev, V. P., & Pfeil, W. (2001). Biochimica et Biophysica Acta, 1547, 397–407.CrossRefGoogle Scholar
  58. 58.
    Nyanhongo, G. S., Couto, S. R., & Guebitz, G. M. (2006). Chemosphere, 64, 359–370.CrossRefGoogle Scholar
  59. 59.
    Murugesan, K., Nam, I. H., Kim, Y. M., & Chang, Y. S. (2007). Enzyme and Microbial Technology, 40, 1662–1672.CrossRefGoogle Scholar
  60. 60.
    Wang, H. X., & Ng, T. B. (2004). Biochemical and Biophysical Research Communications, 315, 450–454.CrossRefGoogle Scholar
  61. 61.
    Wang, H. X., & Ng, T. B. (2006). Applied Microbiology and Biotechnology, 69, 521–525.CrossRefGoogle Scholar
  62. 62.
    Galliano, H., Gas, G., Seris, J. L., & Boudet, A. M. (1991). Enzyme and Microbial Technology, 13, 478–482.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • V. Vivekanand
    • 1
    • 3
  • Pallavi Dwivedi
    • 2
    • 3
  • Nidhi Pareek
    • 3
  • Rajesh P. Singh
    • 3
    Email author
  1. 1.Protein Engineering and Proteomics Group, Department of ChemistryBiotechnology and Food Sciences, Norwegian University of Life SciencesÅsNorway
  2. 2.Department of BiotechnologySir Padampat Singhania University, UdaipurUdaipurIndia
  3. 3.Department of BiotechnologyIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations