Applied Biochemistry and Biotechnology

, Volume 165, Issue 1, pp 47–68 | Cite as

Sterol Glycosyltransferases—The Enzymes That Modify Sterols

Article

Abstract

Sterols are important components of cell membranes, hormones, signalling molecules and defense-related biotic and abiotic chemicals. Sterol glycosyltransferases (SGTs) are enzymes involved in sterol modifications and play an important role in metabolic plasticity during adaptive responses. The enzymes are classified as a subset of family 1 glycosyltransferases due to the presence of a signature motif in their primary sequence. These enzymes follow a compulsory order sequential mechanism forming a ternary complex. The diverse applications of sterol glycosides, like cytotoxic and apoptotic activity, anticancer activity, medicinal values, anti-stress roles and anti-insect and antibacterial properties, draws attention towards their synthesis mechanisms. Many secondary metabolites are derived from sterol pathways, which are important in defense mechanisms against pathogens. SGTs in plants are involved in changed sensitivity to stress hormones and their agrochemical analogs and changed tolerance to biotic and abiotic stresses. SGTs that glycosylate steroidal hormones, such as brassinosteroids, function as growth and development regulators in plants. In terms of metabolic roles, it can be said that SGTs occupy important position in plant metabolism and may offer future tools for crop improvement.

Keywords

Adaptive response Brassinosteroids Cellular homeostasis Detoxification Glycosyltransferases Hormonal regulation Insect resistance Medicinal plant Sterols stress 

References

  1. 1.
    Li, Y., Baldauf, S., Lim, E. K., & Bowles, D. J. (2001). The Journal of Biological Chemistry, 276, 4338–4343.CrossRefGoogle Scholar
  2. 2.
    Mackenzie, P. I., Owen, I. S., Burchell, B., Bock, K. W., Bairoch, A., Bélanger, A., et al. (1997). Pharmacogenetics, 7, 255–269.CrossRefGoogle Scholar
  3. 3.
    Paquette, S., Moller, B. L., & Bak, S. (2003). Phytochemistry, 62, 399–413.CrossRefGoogle Scholar
  4. 4.
    Ross, J., Li, Y., Lim, E. K., & Bowles, D. J. (2001). Genome Biology, 2, 3004.1–3004.6.CrossRefGoogle Scholar
  5. 5.
    Kapitonov, D., & Yu, R. K. (1999). Glycobiology, 9, 961–978.CrossRefGoogle Scholar
  6. 6.
    Vogt, T., & Jones, P. (2000). Trends in Plant Science, 5, 380–386.CrossRefGoogle Scholar
  7. 7.
    Bowles, D. J., Poppenberger, B., & Vaistij, F. (2006). Annual Review of Plant Biology, 57, 567–597.CrossRefGoogle Scholar
  8. 8.
    Ikan, R. (444). Naturally occurring glycosides. Chichester: Wiley.Google Scholar
  9. 9.
    Jones, P., & Vogt, T. (2001). Planta, 213, 164–174.CrossRefGoogle Scholar
  10. 10.
    Lim, E. K., & Bowles, D. J. (2004). The EMBO Journal, 23, 2915–2922.CrossRefGoogle Scholar
  11. 11.
    Pflugmacher, S. S. H. (1998). Phytochemistry, 49, 507–511.CrossRefGoogle Scholar
  12. 12.
    Martinoia, E. K. M., Gesser, M., Sanchez-Hernandez, R., & Rea, P. A. (2001). Vacuolar transport of secondary metabolites and xenobiotics. UK: Sheffield Acad.Google Scholar
  13. 13.
    Dietz, K. J., Sauter, A., Wichert, K., Messdaghi, D., & Hartung, W. (2000). Journal of Experimental Botany, 51, 937–944.CrossRefGoogle Scholar
  14. 14.
    Samuels, A. L., Rensing, K. H., Douglas, C. J., Mansfield, S. D., Dharmawardhana, D. P., & Ellis, B. E. (2002). Planta, 216, 72–82.CrossRefGoogle Scholar
  15. 15.
    Wojciechowski, Z. A., & Van Uon, N. (1975). Acta Biochimica Polonica, 22, 25–38.Google Scholar
  16. 16.
    He, J. X., Fujioka, S., Li, T. S., Kang, S. G., Seto, H., Takatsuto, S., et al. (2003). Plant Physiology, 131, 1258–1269.CrossRefGoogle Scholar
  17. 17.
    Schumacher, K., & Chory, J. (2000). Current Opinion in Plant Biology, 3, 79–84.CrossRefGoogle Scholar
  18. 18.
    Wanke, M., Skorupinska-Tudek, K., & Swiezewska, E. (2001). Acta Biochemica Polonica, 48, 663–672.Google Scholar
  19. 19.
    Benveniste, P. (2004). Annual Review of Plant Biology, 55, 429–457.CrossRefGoogle Scholar
  20. 20.
    Grille, S., Zaslawski, A., Thiele, S., Plat, J., & Warnecke, D. (2010). Progress in Lipid Research, 49, 262–288.CrossRefGoogle Scholar
  21. 21.
    Ly, P. T. T., Singh, S., & Shaw, C. A. (2007). Journal of Neuroscience Research, 85, 231–237.CrossRefGoogle Scholar
  22. 22.
    Cruz-Aguado, R., & Shaw, C. A. (2009). Neurology, 72, 474–476.Google Scholar
  23. 23.
    Haralampidis, K., Trijanowska, M., & Osbourn, A. E. (2002). Advances in Biochemical Engineering/Biotechnology, 75, 31–49.CrossRefGoogle Scholar
  24. 24.
    Ullmann, P., Ury, A., Rimmele, D., Benveniste, P., & Bouvier-Nave, P. (1993). Biochimie, 75, 713–719.CrossRefGoogle Scholar
  25. 25.
    Webb, M. S., Irving, T. C., & Steponkus, P. L. (1995). Biochimica et Biophysica Acta, 1239, 226–238.CrossRefGoogle Scholar
  26. 26.
    Kojima, M., Ohnishi, M., Ito, S., & Fujino, Y. (1989). Lipids, 24, 849–853.CrossRefGoogle Scholar
  27. 27.
    Mulichak, A. M., Losey, H. C., Walsh, C. T., & Garavito, R. M. (2001). Structure (Camb.), 9, 547–557.CrossRefGoogle Scholar
  28. 28.
    Mulichak, A. M., Losey, H. C., Lu, W., Wawrzak, Z., Walsh, C. T., & Garavito, R. M. (2003). Proceedings of the National Academy of Science, 100, 9238–9243.CrossRefGoogle Scholar
  29. 29.
    Mulichak, A. M., Lu, W., Losey, H. C., Walsh, C. T., & Garavito, R. M. (2004). Biochemistry, 43, 5170–5180.CrossRefGoogle Scholar
  30. 30.
    Offen, W., Martinez-Fleites, C., Yang, M., Kiat-Lim, E., Davis, B. G., Tarling, C. A., et al. (2006). The EMBO Journal, 25, 1396–1405.CrossRefGoogle Scholar
  31. 31.
    Shao, H., He, X., Achinine, L., Blount, J. W., Dixon, R. A., & Wang, X. (2005). The Plant Cell, 17, 3141–3154.CrossRefGoogle Scholar
  32. 32.
    Madina, B. R., Sharma, L. K., Chaturvedi, P., Sangwan, R. S., & Tuli, R. (2007). Biochimica et Biophysica Acta, 1774, 392–402.Google Scholar
  33. 33.
    Madina, B. R., Sharma, L. K., Chaturvedi, P., Sangwan, R. S., & Tuli, R. (2007). Biochimica et Biophysica Acta, 1774, 1199–1207.Google Scholar
  34. 34.
    Sharma, L. K., Madina, B. R., Chaturvedi, P., Sangwan, R. S., & Tuli, R. (2007). Archives of Biochemistry and Biophysics, 460, 48–55.CrossRefGoogle Scholar
  35. 35.
    Lescovac, V. (2003). Comprehensive enzyme kinetics. Newyork: Kluwer.Google Scholar
  36. 36.
    Mackenzie, P. I., & Rodbourn, L. (1990). The Journal of Biological Chemistry, 265, 11328–11332.Google Scholar
  37. 37.
    Mackenzie, P. I. (1990). The Journal of Biological Chemistry, 265, 3432–3435.Google Scholar
  38. 38.
    Evans, O. P., & O’reilly, D. R. (1998). The Biochemical Journal, 330, 1265–1270.Google Scholar
  39. 39.
    Ullmann, P., Bouvier-Nave, P., & Benveniste, P. (1987). Plant Physiology, 85, 51–55.CrossRefGoogle Scholar
  40. 40.
    Warnecke, D. C., & Heinz, E. (1994). Plant Physiology, 105, 1067–1073.Google Scholar
  41. 41.
    Warnecke, D. C., Baltrusch, M., Buck, F., Wolter, F. P., & Heinz, E. (1997). Plant Molecular Biology, 35, 597–603.CrossRefGoogle Scholar
  42. 42.
    Hartmann-Bouillon, M. A., & Benveniste, P. (1978). Phytochemistry, 17, 1037–1042.CrossRefGoogle Scholar
  43. 43.
    Yoshida, S., & Uemura, M. (1986). Plant Physiology, 82, 807–812.CrossRefGoogle Scholar
  44. 44.
    Burbulis, I. E., & Winkel-Shirley, B. (1999). Proceedings of the National Academy of Sciences of the United States of America, 96, 12929–12934.CrossRefGoogle Scholar
  45. 45.
    Bartholomew, D. M., Van Dyk, D. E., Lau, S. M. C., O’Keefe, D. P., Rea, P. A., & Viitanen, P. V. (2002). Plant Physiology, 130, 1562–1572.CrossRefGoogle Scholar
  46. 46.
    Rea, P. A. (1999). Journal of Experimental Botany, 50, 895–913.CrossRefGoogle Scholar
  47. 47.
    Radominska-Pandya, A., Czernik, P. J., Little, J. M., Battaglia, E., & Mackenzie, P. I. (1999). Drug Metabolism Reviews, 31, 817–899.CrossRefGoogle Scholar
  48. 48.
    Hirschberg, C. B., Robbins, P. W., & Abeijon, C. (1998). Annual Review of Biochemistry, 67, 49–69.CrossRefGoogle Scholar
  49. 49.
    Sakaki, T., Zahringer, U., Warnecke, D. C., Fahl, A., Knogge, W., & Heinz, E. (2001). Yeast, 18, 679–685.CrossRefGoogle Scholar
  50. 50.
    Warnecke, D., Erdmann, R., Fahl, A., Hube, B., Muller, F., Zank, T., et al. (1999). The Journal of Biological Chemistry, 274, 13048–13059.CrossRefGoogle Scholar
  51. 51.
    Smith, P. F. (1971). Journal of Bacteriology, 108, 986–991.Google Scholar
  52. 52.
    Patel, K. R., Smith, P. F., & Mayberry, W. R. (1978). Journal of Bacterial, 136, 829–831.Google Scholar
  53. 53.
    Mayberry, W. R., & Smith, P. F. (1983). Biochimica et Biophysica Acta, 752, 434–443.Google Scholar
  54. 54.
    Livermore, B. P., Bey, R. F., & Johnson, R. C. (1978). Infection and Immunity, 20, 215–220.Google Scholar
  55. 55.
    Hirai, Y., Haque, M., Yoshida, T., Yokota, K., Yasuda, T., & Oguma, K. (1995). Journal of Bacterial, 177, 5327–5333.Google Scholar
  56. 56.
    Lebrun, A. H., Wunder, C., Hildebrand, J., Churin, Y., Zähringer, U., Lindner, U. B., et al. (2006). The Journal of Biological Chemistry, 281, 27765–27772.CrossRefGoogle Scholar
  57. 57.
    Wunder, C., Churin, Y., Winau, F., Warnecke, D., Vieth, M., Lindner, B., et al. (2006). Nature Medicine, 12, 1030–1038.CrossRefGoogle Scholar
  58. 58.
    Berg, S., Edman, M., Li, L., Wikstrom, M., & Wieslander, A. (2001). The Journal of Biological Chemistry, 276, 22056–22063.CrossRefGoogle Scholar
  59. 59.
    Holzl, G., Zahringer, U., Warnecke, D., & Heinz, E. (2005). Plant & Cell Physiology, 46, 1766–1778.CrossRefGoogle Scholar
  60. 60.
    Khan, S., Sneddon, K., Fielding, B., Ward, V., & Davison, S. (2003). Virus Genes, 27, 17–27.CrossRefGoogle Scholar
  61. 61.
    Esders, T. W., & Light, R. J. (1972). The Journal of Biological Chemistry, 247, 7494–7497.Google Scholar
  62. 62.
    McMorris, T. C., & White, R. H. (1977). Biochimica et Biophysica Acta, 486, 308–312.Google Scholar
  63. 63.
    Stasyk, O. V., Nazarko, T. Y., Stasyk, O. G., Krasovska, O. S., Warnecke, D., Nicaud, J. M., et al. (2003). Cell Biology, 27, 947–952.CrossRefGoogle Scholar
  64. 64.
    Kim, Y. K., Wang, Y., Liu, Z. M., & Kolattukudy, P. E. (2002). The Plant Journal, 30, 177–187.CrossRefGoogle Scholar
  65. 65.
    Murakami-Murofushi, K., & Ohta, J. (1989). Biochimica et Biophysica Acta, 992, 412–415.Google Scholar
  66. 66.
    Murakami-Murofushi, K., Nishikawa, K., Hirakawa, E., & Murofushi, H. (1997). The Journal of Biological Chemistry, 272, 486–489.CrossRefGoogle Scholar
  67. 67.
    Abraham, W., Wertz, P. W., Burken, R. R., & Downing, D. T. (1987). Journal of Lipid Research, 28, 446–449.Google Scholar
  68. 68.
    Wertz, P. W., Stover, P. M., Abraham, W., & Downing, D. T. (1986). Journal of Lipid Research, 27, 427–435.Google Scholar
  69. 69.
    Weatherill, P. J., & Burchell, B. (1980). The Biochemical Journal, 189, 377–480.Google Scholar
  70. 70.
    Moghrabi, N., Sutherland, L., Wooster, R., Povey, S., Boxer, M., & Burchell, B. (1992). Annals of Human Genetics, 56, 81–91.CrossRefGoogle Scholar
  71. 71.
    Ritter, J. K., Chen, F., Sheen, Y. Y., Tran, H. M., Kimura, S., Yeatman, M. T., et al. (1992). The Journal of Biological Chemistry, 267, 3257–3261.Google Scholar
  72. 72.
    Dutton, G. J. (1980). Glucuronidation of drugs and other compounds. Boca Raton: CRC.Google Scholar
  73. 73.
    Falany, C. N., Green, M. D., & Tephly, M. D. (1987). The Journal of Biological Chemistry, 262, 1218–1222.Google Scholar
  74. 74.
    Burchell, B., Nebert, D. W., Nelson, D. R., Bock, K. W., Iyanagi, T., Jansen, P. L., et al. (1991). Cell Biology, 10, 487–494.Google Scholar
  75. 75.
    Haque, S. J., Petersen, D. D., Nebert, D. W., & Mackenzie, P. I. (1991). DNA and Cell Biology, 10, 515–524.CrossRefGoogle Scholar
  76. 76.
    Monaghan, G., Clarke, D. J., Povey, S., See, C. G., Boxer, M., & Burchell, B. (1994). Genomics, 23, 496–499.CrossRefGoogle Scholar
  77. 77.
    Hostettmann, K., & Marston, A. (1995). Saponins. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  78. 78.
    Hostettmann, A. M. K., Hostettmann, A., & Marston, A. (1995). Saponins, saponins chemistry and pharmacology of natural products. Cambridge: Cambridge University Press.Google Scholar
  79. 79.
    Morrissey, J. P., & Osbourn, A. E. (1999). Microbiology and Molecular Biology Reviews, 63, 708–724.Google Scholar
  80. 80.
    Misiak, M., Kalinowska, M., & Wojciechowski, Z. A. (1991). Acta Biochimica Polonica, 38, 43–45.Google Scholar
  81. 81.
    Dupéron, R., & Dupéron, P. (1989). Comptes Rendus de l’Academie des Sciences Serie III, 308, 31–34.Google Scholar
  82. 82.
    Verhoek, B., Haas, R., Wrage, K., Linscheid, M., & Heinz, E. (1983). Zeitschrift für Naturforschung, 38, 770–777.Google Scholar
  83. 83.
    Debolt, S., Scheible, W. R., Schrick, K., Auer, M., Beisson, F., Bischoff, V., et al. (2009). Plant Physiology, 151, 78–87.CrossRefGoogle Scholar
  84. 84.
    Potocka, A., & Zimowski, J. (2008). Acta Biochimica Polonica, 55, 127–134.Google Scholar
  85. 85.
    Potocka, A., & Zimowski, J. (2008). Acta Biochimica Polonica, 55, 135–140.Google Scholar
  86. 86.
    Moehs, C., Friedman, P. A. M., & Belknap, W. (1997). The Plant Journal, 11, 227–236.CrossRefGoogle Scholar
  87. 87.
    Kohara, A., Nakajima, C., Hashimoto, K., Ikenaga, T., Tanaka, H., Shoyama, Y., et al. (2005). Plant Molecular Biology, 57, 225–239.CrossRefGoogle Scholar
  88. 88.
    Hillig, I., Leipelt, M., Ott, C., Zahringer, U., Warnecke, D., & Heinz, E. (2003). FEBS Letters, 553, 365–369.CrossRefGoogle Scholar
  89. 89.
    Suzuki, H., Naoumkina, M. R. M., Aziz, N., & May, G. (2005). Planta, 220, 696–707.CrossRefGoogle Scholar
  90. 90.
    Achnine, L., Huhman, D. V., Farag, M. A., Sumner, L. W., Blount, J. W., & Dixon, R. A. (2005). The Plant Journal, 41, 875–877.CrossRefGoogle Scholar
  91. 91.
    Richman, A., Swanson, A., Humphrey, T., Chapman, R., & McGarvey, B. (2005). The Plant Journal, 41, 56–67.CrossRefGoogle Scholar
  92. 92.
    Peng, L. C., Kawagoe, Y., Hogan, P., & Delmer, D. (2002). Science, 295, 147–150.CrossRefGoogle Scholar
  93. 93.
    Cai-Jun, Y., & Jian-Jiang, Z. (2005). Process Biochemistry, 40, 3742–3748.CrossRefGoogle Scholar
  94. 94.
    Paquin, R. (1966). American Potato Journal, 43, 349–354.CrossRefGoogle Scholar
  95. 95.
    Andrivon, D., Corbière, R., Lucas, J. M., Pasco, C., Gravoueille, J. M., Pellé, R., et al. (2003). American Journal of Potato Research, 80, 125–134.CrossRefGoogle Scholar
  96. 96.
    Chong, J., Baltz, R., Schmitt, C., Beffa, R., Fritig, B., & Saindrenan, P. (2002). The Plant Cell, 14, 1093–1097.CrossRefGoogle Scholar
  97. 97.
    Jadhav, S. J., Sharma, R. P., & Salunkhe, D. K. (1981). Critical Reviews in Toxicology, 9, 21–104.CrossRefGoogle Scholar
  98. 98.
    Osbourn, A. (1996). The Plant Cell, 10, 1821–1831.CrossRefGoogle Scholar
  99. 99.
    Becker, P. (1998). FEMS Microbiology Letters, 167, 197–202.Google Scholar
  100. 100.
    Poppenberger, B., Berthiller, F., Lucyshyn, D., Sieberer, T., Schuhmacher, R., Krska, R., et al. (2003). The Journal of Biological Chemistry, 28, 47905–47914.CrossRefGoogle Scholar
  101. 101.
    Keukens, E. A. J., Vrije, T. D., Boom, C. V. D., Waard, P. D., Plasmna, H. H., Theil, F., et al. (1995). Biochimica et Biophysica Acta, 1240, 216–228.CrossRefGoogle Scholar
  102. 102.
    Armah, C. N., Mackie, A. R., Roy, C., Price, K., Osourn, A. E., Bowyer, P., et al. (1999). Biophysical Journal, 76, 281–290.CrossRefGoogle Scholar
  103. 103.
    Sandrock, R. W., & Van Etten, H. D. (1998). Phytopathology, 88, 137–143.CrossRefGoogle Scholar
  104. 104.
    Wubben, J. P., Price, K. R., Daniels, M. J., & Osbourn, A. E. (1996). Phytopathology, 86, 986–992.CrossRefGoogle Scholar
  105. 105.
    Roddick, J. G., Rijnenberg, A. L., & Osman, S. F. (1988). Journal of Chemical Ecology, 14, 889–902.CrossRefGoogle Scholar
  106. 106.
    Fewell, A. M., & Roddick, J. G. (1993). Phytochemistry, 33, 323–328.CrossRefGoogle Scholar
  107. 107.
    Miyakoshi, M., Tamura, Y., Masuda, H., Mizutani, K., Tanaka, O., Ikeda, T., et al. (2000). Journal of Natural Products, 63, 332–348.CrossRefGoogle Scholar
  108. 108.
    Flanders, K. L., Hawkes, J. G., Radcliffe, E. B., & Lauer, F. I. (1992). Euphytica, 61, 83–91.CrossRefGoogle Scholar
  109. 109.
    Kowalski, S. P., Domek, J. M., Sanford, L. L., & Deahl, K. L. (2000). Journal of Entomological Science, 35, 290–300.Google Scholar
  110. 110.
    Sanford, L. L., Domek, J. M., Cantelo, W. W., Kobayashi, R. S., & Sinden, S. L. (1996). American Potato Journal, 73, 79–88.CrossRefGoogle Scholar
  111. 111.
    Palta, J. P., & Li, P. H. (1980). Physiologia Plantarum, 50, 169–175.CrossRefGoogle Scholar
  112. 112.
    Schaller, H. (2003). The role of sterols in plant growth and development. Progress in Lipid Research, 42, 163–175.CrossRefGoogle Scholar
  113. 113.
    Bouvier-Nave, P., Ullmann, P., Rimmele, D., & Benveniste, P. (1984). Plant Science Letters, 36, 19–27.CrossRefGoogle Scholar
  114. 114.
    Kingston, R. E., Schuetz, T. J., & Larin, Z. (1987). Molecular and Cellular Biology, 7, 1530–1534.Google Scholar
  115. 115.
    Kunimoto, S., Kobayashi, T., Kobayashi, S., & Murakami-Murofushi, K. (2000). Cell Stress & Chaperones, 5, 3–7.CrossRefGoogle Scholar
  116. 116.
    Kunimoto, S., Kai, W. M. H., Ishida, Y., Uchiyama, A., Kobayashi, T., & Kobayashi, S. (2002). Cell Structure and Function, 27, 157–162.CrossRefGoogle Scholar
  117. 117.
    Mongrand, S., Morel, J., Laroche, J., & Claverol, S. (2004). The Journal of Biological Chemistry, 279, 36277–36286.CrossRefGoogle Scholar
  118. 118.
    Hansen, J., Türk, R., Vogg, G., Heim, R., & Beck, E. (1997). In H. Rennenberg, W. Eschrich, & H. Ziegler (Eds.), Trees-contributions to modern tree physiology (pp. 97–98). Leiden: Backhuys.Google Scholar
  119. 119.
    Nanjo, T., Kobayashi, M., Yoshida, Y., Kakubari, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1999). FEBS Letters, 461, 205–210.CrossRefGoogle Scholar
  120. 120.
    Steponkus, P. L., Uemura, M., Joseph, R. A., Gilmour, S. J., & Thomashow, M. F. (1998). Proceedings of the National Academy of Science, 95, 14570–14575.CrossRefGoogle Scholar
  121. 121.
    Steponkus, P. L. (1984). Annual Review of Plant Physiology, 35, 543–584.CrossRefGoogle Scholar
  122. 122.
    Thomashow, M. F. (1998). Plant Physiology, 118, 1–7.CrossRefGoogle Scholar
  123. 123.
    Patterson, G. W., Hugly, S., & Harrison, D. (1993). Phytochemistry, 33, 1381–1383.CrossRefGoogle Scholar
  124. 124.
    Uemura, M., Joseph, R. A., & Steponkus, P. L. (1995). Plant Physiology, 109, 15–30.Google Scholar
  125. 125.
    Zhang, C. L. G. (2006). Plant Physiology and Biochemistry, 44, 844–850.CrossRefGoogle Scholar
  126. 126.
    Wang, R. W. M. F., & Ding, C. K. (2005). ISHS Acta Horticult. 682.Google Scholar
  127. 127.
    Anderson, J. V., Li, Q. B., Haskell, D. W., & Guy, C. L. (1994). Plant Physiology, 104, 1359–1370.CrossRefGoogle Scholar
  128. 128.
    Li, Q. B., Haskell, D. W., & Guy, C. L. (1999). Plant Molecular Biology, 39, 21–34.CrossRefGoogle Scholar
  129. 129.
    Clouse, S. D., & Sasse, J. M. (1998). Annual Review of Plant Physiology and Plant Molecular Biology, 49, 427–451.CrossRefGoogle Scholar
  130. 130.
    Grove, M. D., Spencer, G. F., Rohwedder, W. K., Mandava, N., Worley, J. F. Jr., Warthen, J. D., et al. (1979). Nature, 281, 216–217.Google Scholar
  131. 131.
    Adam, G., Schmidt, J., & Schneider, B. (1999). Fortschritte der Chemie Organischer Naturstoffe, 78, 1–46.CrossRefGoogle Scholar
  132. 132.
    Clouse, S. (2001). Current Biology, 11, R904.CrossRefGoogle Scholar
  133. 133.
    Fujioka, S., & Yokota, T. (2003). Annual Review of Plant Biology, 54, 137–164.CrossRefGoogle Scholar
  134. 134.
    Kleczkowski, K., & Schell, J. (1995). Critical Reviews in Plant Sciences, 14, 283–298.CrossRefGoogle Scholar
  135. 135.
    Barbier, O., Bélanger, A., & Hum, D. W. (1999). The Biochemical Journal, 337, 567–574.CrossRefGoogle Scholar
  136. 136.
    Turgeon, D., Carrier, J. S., Chouinard, S., & Belanger, A. (2003). Drug Meta Dispo., 31, 670–676.CrossRefGoogle Scholar
  137. 137.
    Poppenberger, B., Fujioka, S., Soeno, K., George, G. L., Vaistij, F. E., Hiranuma, S., et al. (2005). Proceedings of the National Academy of Science, 102, 15253–15258.CrossRefGoogle Scholar
  138. 138.
    Choi, D., Ha, J. J. Y., Park, H., Su, I. D., Chung, H., & Liu, J. (2005). Plant Cell Reports, 23, 557–566.CrossRefGoogle Scholar
  139. 139.
    Yue, C. J., & Zhong, J. J. (2005). Process Biochemistry, 40, 3742–3748.CrossRefGoogle Scholar
  140. 140.
    Chen, R., Chung, T., Lin, F. N., & Tzen, J. (2009). Acta Pharmacologica Sinica, 30, 61–69.CrossRefGoogle Scholar
  141. 141.
    Matsuda, H., Murakami, T., Kishi, A., & Yoshikawa, M. (2001). Bioorganic & Medicinal Chemistry, 9, 1499–1507.CrossRefGoogle Scholar
  142. 142.
    Zhao, J., Nakamura, N., Hattori, M., Kuboyama, T., Tohda, C., & Komatsu, K. (2002). Chemical & Pharmaceutical Bulletin, 50, 760–765.CrossRefGoogle Scholar
  143. 143.
    Jayaprakasam, B., & Muraleetharan, N. G. (2003). Tetrahedron, 59, 841–849.CrossRefGoogle Scholar
  144. 144.
    Ahuja, A., Kaur, D., Sharada, M., Kumar, A., Suri, K. A., & Dutt, P. (2009). Nat Prod Comm., 4, 479–482.Google Scholar
  145. 145.
    Caradoc-Davies, K. M., Graves, S., O’Reilly, D. R., Evans, O. P., & Ward, V. K. (2001). Virus Genes, 22, 255–264.CrossRefGoogle Scholar
  146. 146.
    Manzan, M. A., Lozano, M. E., Sciocco-Cap, A., Ghiringhelli, P. D., & Romanowski, V. (2002). Virus Genes, 24, 119–130.CrossRefGoogle Scholar
  147. 147.
    Rodrigues, J. C., De Souza, M. L., O’Reilly, D., Velloso, L. M., Pinedo, F. J., Razuck, F. B., et al. (2001). Virus Genes, 22, 103–112.CrossRefGoogle Scholar
  148. 148.
    Tumilasci, V. F., Leal, E., Zanotto, P. M., Luque, T., & Wolff, J. L. (2003). Virus Genes, 27, 137–144.CrossRefGoogle Scholar
  149. 149.
    Wormleaton, S. L., & Winstanley, D. (2001). The Journal of General Virology, 82, 2295–2305.Google Scholar
  150. 150.
    Paczkowski, C., Kalinowska, M., & Wojciechowski, Z. A. (2001). Phytochemistry, 58, 663–669.CrossRefGoogle Scholar
  151. 151.
    McCue, K. F., Allen, P. V., Shepherd, L. V., Blake, A., Whitworth, J., Maccree, M. M., et al. (2006). Phytochemistry, 67, 1590–1597.CrossRefGoogle Scholar
  152. 152.
    Kurosawa, Y., Takahara, H., & Shiraiwa, M. (2002). Planta, 215, 620–629.CrossRefGoogle Scholar
  153. 153.
    Bedir, E., & Khan, I. A. (2000). Journal of Natural Products, 63, 1699–1701.CrossRefGoogle Scholar
  154. 154.
    Bedir, E., Pugh, N. P., Çalış, I., Pasco, D. A., & Khan, I. A. (2000). Biological & Pharmaceutical Bulletin, 23, 834–837.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Pankaj Chaturvedi
    • 1
    • 2
  • Pratibha Misra
    • 1
  • Rakesh Tuli
    • 1
    • 3
  1. 1.National Botanical Research Institute (Council of Scientific & Industrial Research)LucknowIndia
  2. 2.Sanjay Gandhi Post Graduate Institute of Medical SciencesLucknowIndia
  3. 3.Department of BiotechnologyNational Agrifood Biotechnology InstituteMohaliIndia

Personalised recommendations