Applied Biochemistry and Biotechnology

, Volume 164, Issue 8, pp 1405–1421 | Cite as

Influence of Feedstock Particle Size on Lignocellulose Conversion—A Review

  • Bernardo C. VidalJr.
  • Bruce S. Dien
  • K. C. Ting
  • Vijay SinghEmail author


Feedstock particle sizing can impact the economics of cellulosic ethanol commercialization through its effects on conversion yield and energy cost. Past studies demonstrated that particle size influences biomass enzyme digestibility to a limited extent. Physical size reduction was able to increase conversion rates to maximum of ≈50%, whereas chemical modification achieved conversions of >70% regardless of biomass particle size. This suggests that (1) mechanical pretreatment by itself is insufficient to attain economically feasible biomass conversion, and, therefore, (2) necessary particle sizing needs to be determined in the context of thermochemical pretreatment employed for lignocellulose conversion. Studies of thermochemical pretreatments that have taken into account particle size as a factor have exhibited a wide range of maximal sizes (i.e., particle sizes below which no increase in pretreatment effectiveness, measured in terms of the enzymatic conversion resulting from the pretreatment, were observed) from <0.15 to 50 mm. Maximal sizes as defined above were dependent on the pretreatment employed, with maximal size range decreasing as follows: steam explosion > liquid hot water > dilute acid and base pretreatments. Maximal sizes also appeared dependent on feedstock, with herbaceous or grassy biomass exhibiting lower maximal size range (<3 mm) than woody biomass (>3 mm). Such trends, considered alongside the intensive energy requirement of size reduction processes, warrant a more systematic study of particle size effects across different pretreatment technologies and feedstock, as a requisite for optimizing the feedstock supply system.


Cellulosic ethanol Lignocellulose conversion Biomass particle size Biomass recalcitrance 


  1. 1.
    Perlack, R. D., Wright, L. L., Turhollow, A. F., Graham, R. L., Stokes, B. J., & Erbach, D. C. (2005). Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge: Oak Ridge National Laboratory.CrossRefGoogle Scholar
  2. 2.
    Vertès, A. A., Inui, M., & Yukawa, H. (2008). Technological options for biological fuel ethanol. Journal of Molecular Microbiology and Biotechnology, 15, 16–30.CrossRefGoogle Scholar
  3. 3.
    Meunier-Goddik, L., Bothwell, M., Sangseethong, K., Piyachomkwan, K., Chung, Y.-C., Thammasouk, K., et al. (1999). Physicochemical properties of pretreated poplar feedstock during simultaneous saccharification and fermentation. Enzyme Microbial Technol, 24, 667–674.CrossRefGoogle Scholar
  4. 4.
    Mooney, C. A., Mansfield, S. D., Touhy, M. G., & Saddler, J. N. (1998). The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods. Bioresource Technology, 64, 113–119.CrossRefGoogle Scholar
  5. 5.
    Foust, T. D., Ibsen, K. N., Dayton, D. C., Hess, J. R., & Kenney, K. E. (2008). The biorefinery. In M. E. Himmel (Ed.), Biomass recalcitrance: deconstructing the plant cell wall for bioenergy (pp. 7–37). Oxford: Blackwell.Google Scholar
  6. 6.
    Zwart, R. W. R., Boerrigter, H., & van der Drift, A. (2006). The impact of biomass pretreatment on the feasibility of overseas biomass conversion to Fischer–Tropsch products. Energ Fuel, 20, 2192–2197.CrossRefGoogle Scholar
  7. 7.
    Mansfield, S. D., Mooney, C., & Saddler, J. N. (1999). Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnology Progress, 15, 804–816.CrossRefGoogle Scholar
  8. 8.
    Zhang, Y.-H. P., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnology and Bioengineering, 88, 797–824.CrossRefGoogle Scholar
  9. 9.
    Ding, S.-Y., & Himmel, M. E. (2008). Anatomy and ultrastructure of maize cell walls: an example of energy plants. In M. E. Himmel (Ed.), Biomass recalcitrance: deconstructing the plant cell wall for bioenergy (pp. 38–60). Oxford: Blackwell.Google Scholar
  10. 10.
    Harris, P. J., & Stone, B. A. (2008). Chemistry and molecular organization of plant cell walls. In M. E. Himmel (Ed.), Biomass recalcitrance: deconstructing the plant cell wall for bioenergy (pp. 61–93). Oxford: Blackwell.Google Scholar
  11. 11.
    Chang, V. S., & Holtzapple, M. T. (2000). Fundamental factors affecting biomass enzymatic reactivity. Applied Biochemistry and Biotechnology, 84–86, 5–37.CrossRefGoogle Scholar
  12. 12.
    Sinitsyn, A. P., Gusakov, A. V., & Vlasenko, E. Y. (1991). Effect of structural and physico-chemical features of cellulosic substrates on the efficiency of enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 30, 43–59.CrossRefGoogle Scholar
  13. 13.
    Grethlein, H. E. (1985). The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Biotechnol, 3, 155–160.CrossRefGoogle Scholar
  14. 14.
    Thompson, D. N., Chen, H. C., & Grethlein, H. E. (1992). Comparison of pretreatment methods on the basis of available surface area. Bioresource Technology, 39, 155–163.CrossRefGoogle Scholar
  15. 15.
    Gharpuray, M. M., Lee, Y.-H., & Fan, L. T. (1983). Structural modifications of lignocellulosics by pretreatment to enhance enzymatic hydrolysis. Biotechnology and Bioengineering, 25, 157–172.CrossRefGoogle Scholar
  16. 16.
    Himmel, M., Tucker, M., Baker, J., Rivard, C., Oh, K., & Grohmann, K. (1985). Comminution of biomass: hammer and knife mills. Biotechnology and Bioengineering Symposium, 15, 39–58.Google Scholar
  17. 17.
    Cadoche, L., & López, G. D. (1989). Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biol Wastes, 30, 153–157.CrossRefGoogle Scholar
  18. 18.
    Schell, D. J., & Harwood, C. (1994). Milling of lignocellulosic biomass: results of pilot-scale testing. Applied Biochemistry and Biotechnology, 45(46), 159–168.CrossRefGoogle Scholar
  19. 19.
    Mani, S., Tabil, L. G., & Sokhansanj, S. (2004). Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass and Bioenergy, 27, 339–352.CrossRefGoogle Scholar
  20. 20.
    Bitra, V. S. P., Womac, A. R., Chevanan, N., Miu, P. I., Igathinathane, C., Sokhansanj, S., et al. (2009). Direct mechanical energy measures of hammer mill comminution of switchgrass, wheat straw, and corn stover and analysis of their particle size distributions. Powder Technology, 193, 32–45.CrossRefGoogle Scholar
  21. 21.
    Esteban, L. S., & Carrasco, J. E. (2006). Evaluation of different strategies for pulverization of forest biomasses. Powder Technology, 166, 139–151.CrossRefGoogle Scholar
  22. 22.
    Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., et al. (2002). Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. Golden: National Renewable Energy Laboratory.CrossRefGoogle Scholar
  23. 23.
    Holtzapple, M. T., Humphrey, A. E., & Taylor, J. D. (1989). Energy requirements for the size reduction of poplar and aspen wood. Biotechnology and Bioengineering, 33, 207–210.CrossRefGoogle Scholar
  24. 24.
    Zhu, J. Y., Wang, G. S., Pan, X. J., & Gleisner, R. (2009). Specific surface to evaluate the efficiencies of milling and pretreatment of wood for enzymatic saccharification. Chemical Engineering Science, 64, 474–485.CrossRefGoogle Scholar
  25. 25.
    Shewale, I. G., & Sadana, J. C. (1979). Enzymatic hydrolysis of cellulosic materials by Sclerotium rolfsii culture filtrate for sugar production. Canadian Journal of Microbiology, 25, 773–783.CrossRefGoogle Scholar
  26. 26.
    Weimer, P. J., & Weston, W. M. (1985). Relationship between the fine structure of native cellulose degradability by the cellulase complexes of Trichoderma reesei and Clostridium thermocellum. Biotechnology and Bioengineering, 27, 1540–1547.CrossRefGoogle Scholar
  27. 27.
    Puri, V. P. (1984). Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnology and Bioengineering, 26, 1219–1222.CrossRefGoogle Scholar
  28. 28.
    Ryu, D. D. Y., Lee, S. B., Tassinari, T., & Macy, C. (1982). Effect of compression milling on cellulose structure and on enzymatic hydrolysis kinetics. Biotechnology and Bioengineering, 24, 1047–1067.CrossRefGoogle Scholar
  29. 29.
    Caulfield, D. F., & Moore, W. E. (1974). Effect of varying crystallinity of cellulose on enzymatic hydrolysis. Wood Sci, 6, 375–379.Google Scholar
  30. 30.
    Rivers, D. B., & Emert, G. H. (1987). Lignocellulose pretreatment: a comparison of wet and dry ball attrition. Biotechnological Letters, 9, 365–368.CrossRefGoogle Scholar
  31. 31.
    Rivers, D. B., & Emert, G. H. (1988). Factors affecting the enzymatic hydrolysis of municipal solid waste components. Biotechnology and Bioengineering, 26, 278–281.CrossRefGoogle Scholar
  32. 32.
    Rivers, D. B., & Emert, G. H. (1988). Factors affecting the enzymatic hydrolysis of bagasse and rice straw. Biol Wastes, 26, 85–95.CrossRefGoogle Scholar
  33. 33.
    Pordesimo, L. O., Ray, S. J., Buschermohle, M. J., Waller, J. C., & Wilkerson, J. B. (2005). Processing cotton gin trash to enhance in vitro dry matter digestibility in reduced time. Bioresource Technology, 96, 47–53.CrossRefGoogle Scholar
  34. 34.
    Düsterhöft, E.-M., Engels, F. M., & Voragen, A. G. J. (1993). Parameters affecting the enzymic hydrolysis of oil-seed meals, lignocellulosic by-products of the food industry. Bioresource Technology, 44, 39–46.CrossRefGoogle Scholar
  35. 35.
    Dasari, R. K., & Berson, R. E. (2007). The effect of particle size on hydrolysis reaction rates and rheological properties in cellulosic slurries. Applied Biochemistry and Biotechnology, 137, 289–299.CrossRefGoogle Scholar
  36. 36.
    Elshafei, A. M., Vega, J. L., Klasson, K. T., Clausen, E. C., & Gaddy, J. L. (1991). The saccharification of corn stover by cellulase from Penicillium funiculosum. Bioresource Technology, 35, 73–80.CrossRefGoogle Scholar
  37. 37.
    Mooney, C. A., Mansfield, S. D., Beatson, R. P., & Saddler, J. N. (1999). The effect of fiber characteristics on hydrolysis and cellulase accessibility to softwood substrates. Enzyme Microbial Technol, 25, 644–650.CrossRefGoogle Scholar
  38. 38.
    Jackson, L. S., Heitmann, J., & Joyce, T. (1993). Enzymatic modifications of secondary fibre. Tappi Journal, 76, 147–154.Google Scholar
  39. 39.
    Laivins, G. V., & Scallan, A. M. (1996). The influence of drying and beating on the swelling of fines. Journal of Pulp and Paper Science, 22, J178–J184.Google Scholar
  40. 40.
    Nazhad, M. M., Ramos, L. P., Paszner, L., & Saddler, J. N. (1995). Structural constraints affecting the initial enzymatic hydrolysis of recycled paper. Enzyme and Microbial Technology, 17, 68–74.CrossRefGoogle Scholar
  41. 41.
    Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18.CrossRefGoogle Scholar
  42. 42.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.CrossRefGoogle Scholar
  43. 43.
    Eggeman, T., & Elander, R. T. (2005). Process and economic analysis of pretreatment technologies. Bioresource Technology, 96, 2019–2025.CrossRefGoogle Scholar
  44. 44.
    Chheda, J. N., Román-Leshkov, Y., & Dumesic, J. A. (2007). Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chemistry, 9, 342–350.CrossRefGoogle Scholar
  45. 45.
    Kim, S. B., & Lee, Y. Y. (2002). Diffusion of sulfuric acid within lignocellulosic biomass particles and its impact on dilute-acid pretreatment. Bioresource Technology, 83, 165–171.CrossRefGoogle Scholar
  46. 46.
    Carrasco, F., & Roy, C. (1992). Kinetic study of dilute-acid prehydrolysis of xylan-containing biomass. Wood Science and Technology, 26, 189–208.Google Scholar
  47. 47.
    Maloney, M. T. (1986). An engineering analysis of the production of xylose by dilute-acid hydrolysis of hardwood hemicellulose. Biotechnology Progress, 2, 192–202.CrossRefGoogle Scholar
  48. 48.
    Aguilar, R., Ramírez, J. A., Garrote, G., & Vázquez, M. (2002). Kinetic study of the acid hydrolysis of sugar cane bagasse. Journal of Food Engineering, 55, 309–318.CrossRefGoogle Scholar
  49. 49.
    Bhandari, N., MacDonald, D. G., & Bakhshi, N. N. (1984). Kinetic studies of corn stover saccharification using sulphuric acid. Biotechnology and Bioengineering, 26, 320–327.CrossRefGoogle Scholar
  50. 50.
    Brennan, A. H., Hoagland, W., & Schell, D. J. (1986). High temperature acid hydrolysis of biomass using an engineering-scale plug flow reactor: results of low solids testing. Biotechnology and Bioengineering Symposium, 17, 53–70.Google Scholar
  51. 51.
    Ranganathan, D. G., MacDonald, D. G., & Bakhshi, N. N. (1985). Kinetic studies of wheat straw hydrolysis using sulphuric acid. Canadian Journal of Chemical Engineering, 63, 840–844.CrossRefGoogle Scholar
  52. 52.
    Singh, A., Das, K., & Sharma, D. K. (1984). Production of xylose, furfural, fermentable sugars and ethanol from agricultural residues. Journal of Chemical Technology and Biotechnology, 34A, 51–61.Google Scholar
  53. 53.
    Springer, E. L. (1985). Prehydrolysis of hardwoods with dilute sulfuric acid. Industrial & Engineering Chemistry Product Research and Development, 24, 614–623.CrossRefGoogle Scholar
  54. 54.
    Yat, S. C., Berger, A., & Shonnard, D. R. (2008). Kinetic characterization for dilute sulfuric acid hydrolysis of timber varieties and switchgrass. Bioresource Technology, 99, 3855–3863.CrossRefGoogle Scholar
  55. 55.
    Hsu, T.-A., Himmel, M., Schell, D., Farmer, J., & Berggren, M. (1996). Design and initial operation of a high-solids, pilot-scale reactor for dilute-acid pretreatment of lignocellulosic biomass. Applied Biochemistry and Biotechnology, 57(58), 3–18.CrossRefGoogle Scholar
  56. 56.
    Mason WH. Process and apparatus for disintegration of wood and the like. US Patent 1,578,609;1926Google Scholar
  57. 57.
    Brownell, H. H., Yu, E. K. C., & Saddler, J. N. (1986). Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop. Biotechnology and Bioengineering, 28, 792–801.CrossRefGoogle Scholar
  58. 58.
    Gregg, D. J., & Saddler, J. N. (1996). Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnology and Bioengineering, 51, 375–383.CrossRefGoogle Scholar
  59. 59.
    Cullis, I. F., Saddler, J. N., & Mansfield, S. D. (2004). Effect of initial moisture content and chip size on the bioconversion efficiency of softwood lignocellulosics. Biotechnology and Bioengineering, 85, 413–421.CrossRefGoogle Scholar
  60. 60.
    Ballesteros, I., Oliva, J. M., Navarro, A. A., Gonzalez, A., Carrasco, J., & Ballesteros, M. (2000). Effect of chip size on steam explosion pretreatment of softwood. Applied Biochemistry and Biotechnology, 84–86, 97–110.CrossRefGoogle Scholar
  61. 61.
    Ballesteros, I., Oliva, J. M., Negro, M. J., Manzanares, P., & Ballesteros, M. (2002). Enzymic hydrolysis of steam exploded herbaceous agricultural waste (Brassica carinata) at different particle sizes. Process Biochemistry, 38, 187–192.CrossRefGoogle Scholar
  62. 62.
    Negro, M. J., Manzanares, P., Ballesteros, I., Oliva, J. M., Cabañas, A., & Ballesteros, M. (2003). Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Applied Biochemistry and Biotechnology, 105–108, 87–100.CrossRefGoogle Scholar
  63. 63.
    van Walsum, G. P., Allen, S. G., Spencer, M. J., Laser, M. S., Antal, M. J., Jr., & Lynd, L. R. (1996). Conversion of lignocellulosics pretreated with liquid hot water to ethanol. Applied Biochemistry and Biotechnology, 57(58), 157–170.CrossRefGoogle Scholar
  64. 64.
    Laureano-Perez, L., Teymouri, F., Alizadeh, H., & Dale, B. E. (2005). Understanding factors that limit enzymatic hydrolysis of biomass: characterization of pretreated corn stover. Applied Biochemistry and Biotechnology, 121–124, 1081–1099.CrossRefGoogle Scholar
  65. 65.
    Chundawat, S. P. S., Venkatesh, B., & Dale, B. E. (2007). Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnology and Bioengineering, 96, 219–231.CrossRefGoogle Scholar
  66. 66.
    Moniruzzaman, M., Dale, B. E., Hespell, R. B., & Bothast, R. J. (1997). Enzymatic hydrolysis of high-moisture corn fiber pretreated by AFEX and recovery and recycling of the enzyme complex. Applied Biochemistry and Biotechnology, 67, 113–126.CrossRefGoogle Scholar
  67. 67.
    Chang, V. S., Burr, B., & Holtzapple, M. T. (1997). Lime pretreatment of switchgrass. Applied Biochemistry and Biotechnology, 63(65), 3–19.CrossRefGoogle Scholar
  68. 68.
    Li, Y., Ruan, R., Chen, P. L., Liu, Z., Pan, X., Lin, X., et al. (2004). Enzymatic hydrolysis of corn stover pretreated by combined dilute alkaline treatment and homogenization. T ASABE, 47, 821–825.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Bernardo C. VidalJr.
    • 1
    • 3
  • Bruce S. Dien
    • 2
  • K. C. Ting
    • 1
  • Vijay Singh
    • 1
    Email author
  1. 1.Agricultural and Biological EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.National Center for Agricultural Utilization Research, US Department of AgriculturePeoriaUSA
  3. 3.Novozymes North America, Inc.FranklintonUSA

Personalised recommendations