Advertisement

Applied Biochemistry and Biotechnology

, Volume 164, Issue 8, pp 1278–1291 | Cite as

Global Gene Response in Saccharomyces cerevisiae Exposed to Silver Nanoparticles

  • Javed H. Niazi
  • Byoung-In Sang
  • Yeon Seok Kim
  • Man Bock Gu
Article

Abstract

Silver nanoparticles (AgNPs), exhibiting a broad size range and morphologies with highly reactive facets, which are widely applicable in real-life but not fully verified for biosafety and ecotoxicity, were subjected to report transcriptome profile in yeast Saccharomyces cerevisiae. A large number of genes accounted for ∼3% and ∼5% of the genome affected by AgNPs and Ag-ions, respectively. Principal component and cluster analysis suggest that the different physical forms of Ag were the major cause in differential expression profile. Among 90 genes affected by both AgNPs and Ag-ions, metalloprotein mediating high resistance to copper (CUP1-1 and CUP1-2) were strongly induced by AgNPs (∼45-folds) and Ag-ions (∼22-folds), respectively. A total of 17 genes, responsive to chemical stimuli, stress, and transport processes, were differentially induced by AgNPs. The differential expression was also seen with Ag-ions that affected 73 up- and 161 down-regulating genes, and most of these were involved in ion transport and homeostasis. This study provides new information on the knowledge for impact of nanoparticles on living microorganisms that can be extended to other nanoparticles.

Keywords

Silver nanoparticles Nanotoxicity Microarray Transcriptome analysis Yeast genome analysis 

Notes

Acknowledgments

This research was supported by the Ministry of Environment under “The Eco-technopia 21 project” and in part by Institute Research Program of Korea Institute of Science and Technology (KIST), Korea. The authors are grateful for this support.

Supplementary material

12010_2011_9212_MOESM1_ESM.doc (279 kb)
ESM 1 (DOC 279 kb)

References

  1. 1.
    Somorjai, G. A. (2004). Nature, 430(7001), 730.CrossRefGoogle Scholar
  2. 2.
    Doraiswamy, N., & Marks, L. D. (1996). Surface Science, 348(1–2), L67–L69.CrossRefGoogle Scholar
  3. 3.
    De Wild, M., Berner, S., Suzuki, H., Ramoino, L., Baratoff, A., & Jung, T. A. (2003). Annals of the New York Academy of Sciences, 1006, 291–305.CrossRefGoogle Scholar
  4. 4.
    Brooking, J., Davis, S. S., & Illum, L. (2001). Journal of Drug Targeting, 9(4), 267–279.CrossRefGoogle Scholar
  5. 5.
    Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramirez, J. T., et al. (2005). Nanotechnology, 16, 2346–2353.CrossRefGoogle Scholar
  6. 6.
    Braydich-Stolle, L., Hussain, S., Schlager, J. J., & Hofmann, M. C. (2005). Toxicological Sciences, 88(2), 412–419.CrossRefGoogle Scholar
  7. 7.
    Ding, L., Stilwell, J., Zhang, T., Elboudwarej, O., Jiang, H., Selegue, J. P., et al. (2005). Nano Letters, 5(12), 2448–2464.CrossRefGoogle Scholar
  8. 8.
    Borm, P. J., Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., et al. (2006). Part Fibre Toxicol, 3, 11.CrossRefGoogle Scholar
  9. 9.
    Van Hoecke, K., Quik, J. T., Mankiewicz-Boczek, J., De Schamphelaere, K. A., Elsaesser, A., Van der Meeren, P., et al. (2009). Environmental Science & Technology, 43(12), 4537–4546.CrossRefGoogle Scholar
  10. 10.
    Moore, M. N. (2006). Environment International, 32, 967–976.CrossRefGoogle Scholar
  11. 11.
    Oberdorster, E., Zhu, S., Blickley, T. M., McClellan-Green, P., & Haasch, M. L. (2006). Carbon, 44, 1112–1120.CrossRefGoogle Scholar
  12. 12.
    Oberdorster, G., Stone, V., & Donaklson, K. (2007). Nanotoxicology, 1, 2–25.CrossRefGoogle Scholar
  13. 13.
    Hwang, E. T., Lee, J. H., Chae, Y. J., Kim, Y. S., Kim, B. C., Sang, B. I., et al. (2008). Small, 4(6), 746–750.CrossRefGoogle Scholar
  14. 14.
    Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H. C., & Kahru, A. (2008). Chemosphere, 71, 1308–1316.CrossRefGoogle Scholar
  15. 15.
    Fang, J., Lyon, D. Y., Wiesner, M. R., Dong, J., & Alvarez, P. J. (2007). Environmental Science & Technology, 41(7), 2636–2642.CrossRefGoogle Scholar
  16. 16.
    Oberdorster, G., Oberdorster, E., & Oberdorster, J. (2005). Environmental Health Perspectives, 113(7), 823–839.CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Guggenbichler, J. P., Boswald, M., Lugauer, S., & Krall, T. (1999). Infection, 27(Suppl 1), S16–S23.CrossRefGoogle Scholar
  19. 19.
    Kearney, J. N., Arain, T., & Holland, K. T. (1988). The Journal of Hospital Infection, 11(1), 68–76.CrossRefGoogle Scholar
  20. 20.
    Solioz, M., & Odermatt, A. (1995). The Journal of Biological Chemistry, 270(16), 9217–9221.CrossRefGoogle Scholar
  21. 21.
    Solioz, M., & Vulpe, C. (1996). Trends in Biochemical Sciences, 21(7), 237–241.Google Scholar
  22. 22.
    Jin, Y. H., Dunlap, P. E., McBride, S. J., Al-Refai, H., Bushel, P. R., & Freedman, J. H. (2008). PLoS Genetics, 4(4), e1000053.CrossRefGoogle Scholar
  23. 23.
    Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., et al. (2004). Genome Biology, 5(10), R80.1–R80.16.CrossRefGoogle Scholar
  24. 24.
    Team, R. D. C. R. (2007). A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  25. 25.
    Smyth, G. K. (2005). Limma: Linear models for microarray data. In R. Gentleman VC, S. Dudoit, R. Irizarry, & W. Huber (Eds.), Bioinformatics and computational biology solutions using R and bioconductor (pp. 397–420). New York: Springer.CrossRefGoogle Scholar
  26. 26.
    Smyth, G. K., & Speed, T. (2003). Methods, 31(4), 265–273.CrossRefGoogle Scholar
  27. 27.
    Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Proceedings of the National Academy of Sciences of the United States of America, 98(9), 5116–5121.CrossRefGoogle Scholar
  28. 28.
    Zupan, B., & Demsar, J. (2008). Clinics in Laboratory Medicine, 28(1), 37–54. vi.CrossRefGoogle Scholar
  29. 29.
    Saldanha, A. J. (2004). Bioinformatics, 20(17), 3246–3248.CrossRefGoogle Scholar
  30. 30.
    De Hoon, M. J., Imoto, S., Nolan, J., & Miyano, S. (2004). Bioinformatics, 20(9), 1453–1454.CrossRefGoogle Scholar
  31. 31.
    Raychaudhuri S., Stuart J., Altman R. (2000). Principal components analysis to summarize microarray experiments: Application to sporulation time series. In 2000: NIH Public Access (p. 455).Google Scholar
  32. 32.
    Li, L., & Kaplan, J. (2004). The Journal of Biological Chemistry, 279(32), 33653–33661.CrossRefGoogle Scholar
  33. 33.
    Winge, D. R. (1998). Progress in Nucleic Acid Research and Molecular Biology, 58, 165–195.CrossRefGoogle Scholar
  34. 34.
    Parveen, M., Hasan, M. K., Takahashi, J., Murata, Y., Kitagawa, E., Kodama, O., et al. (2004). The Journal of Antimicrobial Chemotherapy, 54(1), 46–55.CrossRefGoogle Scholar
  35. 35.
    Mandala, S. M., Thornton, R., Tu, Z., Kurtz, M. B., Nickels, J., Broach, J., et al. (1998). Proceedings of the National Academy of Sciences of the United States of America, 95(1), 150–155.CrossRefGoogle Scholar
  36. 36.
    Skrzypek, M. S., Nagiec, M. M., Lester, R. L., & Dickson, R. C. (1999). Journal of Bacteriology, 181(4), 1134–1140.Google Scholar
  37. 37.
    Hurlimann, H. C., Stadler-Waibel, M., Werner, T. P., & Freimoser, F. M. (2007). Molecular Biology of the Cell, 18(11), 4438–4445.CrossRefGoogle Scholar
  38. 38.
    Varela, J. C., van Beekvelt, C., Planta, R. J., & Mager, W. H. (1992). Molecular Microbiology, 6(15), 2183–2190.CrossRefGoogle Scholar
  39. 39.
    Kapteyn, J. C., ter Riet, B., Vink, E., Blad, S., De Nobel, H., Van Den Ende, H., et al. (2001). Molecular Microbiology, 39(2), 469–479.CrossRefGoogle Scholar
  40. 40.
    Graybill, E. R., Rouhier, M. F., Kirby, C. E., & Hawes, J. W. (2007). Archives of Biochemistry and Biophysics, 465(1), 26–37.CrossRefGoogle Scholar
  41. 41.
    Luikenhuis, S., Perrone, G., Dawes, I. W., & Grant, C. M. (1998). Molecular Biology of the Cell, 9(5), 1081–1091.Google Scholar
  42. 42.
    Riggle, P. J., & Kumamoto, C. A. (2000). Journal of Bacteriology, 182(17), 4899–4905.CrossRefGoogle Scholar
  43. 43.
    Odermatt, A., Krapf, R., & Solioz, M. (1994). Biochemical and Biophysical Research Communications, 202(1), 44–48.CrossRefGoogle Scholar
  44. 44.
    Butt, T. R., Sternberg, E., Herd, J., & Crooke, S. T. (1984). Gene, 27(1), 23–33.CrossRefGoogle Scholar
  45. 45.
    Yuan, D. S., Stearman, R., Dancis, A., Dunn, T., Beeler, T., & Klausner, R. D. (1995). Proceedings of the National Academy of Sciences of the United States of America, 92(7), 2632–2636.CrossRefGoogle Scholar
  46. 46.
    Lenburg, M. E., & O’Shea, E. K. (1996). Trends in Biochemical Sciences, 21(10), 383–387.Google Scholar
  47. 47.
    Yoshihisa, T., & Anraku, Y. (1989). Biochemical and Biophysical Research Communications, 163(2), 908–915.CrossRefGoogle Scholar
  48. 48.
    Amoroso, G., Morell-Avrahov, L., Muller, D., Klug, K., & Sultemeyer, D. (2005). Molecular Microbiology, 56(2), 549–558.CrossRefGoogle Scholar
  49. 49.
    Gotz, R., Gnann, A., & Zimmermann, F. K. (1999). Yeast, 15(10A), 855–864.CrossRefGoogle Scholar
  50. 50.
    Protchenko, O., Ferea, T., Rashford, J., Tiedeman, J., Brown, P. O., Botstein, D., et al. (2001). The Journal of Biological Chemistry, 276(52), 49244–49250.CrossRefGoogle Scholar
  51. 51.
    Haurie, V., Boucherie, H., & Sagliocco, F. (2003). The Journal of Biological Chemistry, 278(46), 45391–45396.CrossRefGoogle Scholar
  52. 52.
    De Freitas, J., Wintz, H., Kim, J. H., Poynton, H., Fox, T., & Vulpe, C. (2003). Biometals, 16(1), 185–197.CrossRefGoogle Scholar
  53. 53.
    Lubick, N. (2008). Environmental Science & Technology, 42(23), 8617.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Javed H. Niazi
    • 1
    • 2
    • 3
  • Byoung-In Sang
    • 2
    • 4
  • Yeon Seok Kim
    • 1
  • Man Bock Gu
    • 1
  1. 1.College of Life Sciences and BiotechnologyKorea UniversitySeoulRepublic of Korea
  2. 2.Center for Environmental Technology ResearchKorea Institute of Science and TechnologySeoulRepublic of Korea
  3. 3.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey
  4. 4.Department of Chemical EngineeringHanyang UniversitySungdong-KuKorea

Personalised recommendations