Applied Biochemistry and Biotechnology

, Volume 164, Issue 8, pp 1246–1256 | Cite as

In Vivo Evalution of Hypoglycemic Activity of Aloe spp. and Identification of Its Mode of Action on GLUT-4 Gene Expression In Vitro

  • Rajiv Kumar
  • Bhavna Sharma
  • Neha R. Tomar
  • Partha Roy
  • Atul K. Gupta
  • Anil KumarEmail author


The present study evaluated the hypoglycemic activity of Aloe extract on streptozotocin-induced diabetic mice and focuses its effect on GLUT-4 gene expression under in vitro cell-culture system. Administration of extract at the dosage of 130 mg/kg body weight per day for 4 weeks resulted in significant decrease in blood glucose and total cholesterol in streptozotocin (60 mg/kg body weight) induced diabetic mice. The hypoglycemic effect was compared with metformin. The activities of carbohydrate metabolizing enzymes were brought back to near normal level after the treatment and glucose homeostasis was maintained. Lyophilized aqueous Aloe extract (1 mg/ml) upregulated the GLUT-4 mRNA synthesis in mouse embryonic NIH/3T3 cells.


Diabetes mellitus Aloe extract In vivo Glucose tolerance test Lipid profile Hexokinase assay In vitro GLUT-4 gene NIH/3T3 cells 



The authors would like to thank Dean, College of postgraduate studies, G. B. Pant University of Agriculture and Technology, Pantnagar, for providing necessary facilities. First author also acknowledge Department of Biotechnology, Government of India, for providing merit scholarship during his Master’s degree program.


  1. 1.
    Arky, R. A. (1982). Clinical correlates of metabolic derangements of diabetes mellitus. In G. P. Kozak (Ed.), Complications of diabetes mellitus (pp. 16–20). Philadelphia: W.B. Saunders.Google Scholar
  2. 2.
    Marcovecchio, M., Mohn, A., & Chiarelli, F. (2005). Type 2 diabetes mellitus in children and adolescents. Journal of Endocrinology Investigation, 28, 853–863.Google Scholar
  3. 3.
    Wild, S., Roglie, G., Green, A., et al. (2004). Global prevalence of diabetes estimates for the year 2000 and projections for 2030. Diabetes Care, 27(5), 1047–1059.CrossRefGoogle Scholar
  4. 4.
    Bailey, L. J., & Day, C. (1989). Traditional plant medicine as treatment for diabetes. Diabetes Care, 12, 553–564.CrossRefGoogle Scholar
  5. 5.
    Bunyapraphatsara, N., Chasrakaew, W., Pornchirasilp, S., et al. (1995). Antidiabetic effect of fresh and preserved Aloe gel. Thai Journal of Phytopharmacy, 2, 1–7.Google Scholar
  6. 6.
    Yongchaiyudha, S., Rungpitarangsi, V., Bunyapraphatsara, N., et al. (1996). Antidiabetic activity of Aloe vera juice l. Clinical trial in new cases of diabetes mellitus. Phytomedicine, 3, 241–243.Google Scholar
  7. 7.
    Yagi, A., Hegazy, S., Kabbash, A., et al. (2009). Possible hypoglycemic effect of Aloe vera L. high molecular weight fractions on type 2 diabetic patients. Saudi Pharmaceutical Journal, 17(3), 210–217.CrossRefGoogle Scholar
  8. 8.
    Ajbanoor, M. A. (1990). Effects of Aloes on blood glucose levels in normal and Alloxan-diabetic mice. Journal of Ethnopharmacology, 28, 215–220.CrossRefGoogle Scholar
  9. 9.
    Beppu, H., Nagamura, Y., & Fujita, K. (1993). Hypoglycaemic and anti-diabetic effects in mice of Aloe arborescens Miller var. natalensis Berger. Phytotherapy Research, 7, S37–S42.CrossRefGoogle Scholar
  10. 10.
    Beppu, H., Shimpo, K., Chihara, T., et al. (2006). Antidiabetic effects of dietary administration of Aloe arborescens Miller components on multiple low-dose streptozotocin-induced diabetes in mice, investigation on hypoglycemic action and systemic absorption dynamics of Aloe components. Journal of Ethnopharmacology, 103, 468–477.CrossRefGoogle Scholar
  11. 11.
    Rajasekaran, S., Sivagnanam, K., Ravi, K., et al. (2004). Hypoglycemic effect of Aloe vera gel on streptozotocin-induced diabetes in experimental rats. Journal of Medicinal Food, 7, 61–66.CrossRefGoogle Scholar
  12. 12.
    Rajasekaran, S., Sivagnanam, K., & Subramanian, S. (2005). Modulatory effects of Aloe vera leaf gel extract on oxidative stress in rats treated with streptozotocin. The Journal of Pharmacy and Pharmacology, 57, 241–246.CrossRefGoogle Scholar
  13. 13.
    Rajasekaran, S., Ravi, K., Sivagnanam, K., et al. (2006). Beneficial effects of Aloe vera leaf gel extract on lipid profile status in rats with streptozotocin diabetes. Clinical and Experimental Pharmacology & Physiology, 33, 232–237.CrossRefGoogle Scholar
  14. 14.
    Kim, K., Kim, H., Kwon, J., et al. (2009). Hypoglycemic and hypolipidemic effects of processed Aloe vera gel in a mouse model of non-insulin-dependent diabetes mellitus. Phytomedicine, 16, 856–863.CrossRefGoogle Scholar
  15. 15.
    Gbolade, A. A. (2009). Inventry of antidiabetic plants in selected districts of lagos state, Nigeria. Journal of Ethnopharmacology, 121, 135–139.CrossRefGoogle Scholar
  16. 16.
    Ghannam, N., & Geissman, E. S. (1986). The anti-diabetic activity of Aloes, preliminary clinical and experimental observations. Hormone Research, 24, 288–294.CrossRefGoogle Scholar
  17. 17.
    Schaftingen, E. V., & Gerin, I. (2002). The glucose-6-phosphatase system. Journal of Biochemistry, 362, 513–532.CrossRefGoogle Scholar
  18. 18.
    Brandstrup, N., Kirk, J. E., & Bruni, C. (1957). Determination of hexokinase in tissues. Journal of Gerontology, 12, 166–171.Google Scholar
  19. 19.
    Sadasivam, S., & Manickam, A. (1996). Carbohydrates. In S. Sadasivam & A. Manickam (Eds.), Methods in biochemistry (pp. 11–12). New Delhi: New Age International Private Limited.Google Scholar
  20. 20.
    Obata, M., Ito, S., & Beppu, H. (1993). Mechanism of antiinflammatory and antithermal burn action of Cpase from Aloe arborescence Miller var. natalensis berger in rats and mice. Phytotherapy Reasearch, 7(7), S30–S33.CrossRefGoogle Scholar
  21. 21.
    Hamman, J. H. (2008). Composition and applications of Aloe vera gel. Molecules, 13, 1599–1616.CrossRefGoogle Scholar
  22. 22.
    Vella, S., Buetlow, L., Royle, P., et al. (2010). The use of metformin in type 1 diabetes: a systemic review of efficacy. Diabetologia, 53(5), 809–820.CrossRefGoogle Scholar
  23. 23.
    Perkins, J. M., & Davis, S. N. (2007). The rationale for prandial glycemic control in diabetes mellitus. Insulin, 2(2), 52–60.CrossRefGoogle Scholar
  24. 24.
    Valdivielso, P., Puerta, S., Rioja, J., et al. (2010). Postprandial apolipopreotein B48 is associated with asymptomatic peripheral arterial diseases, a study in patients with type 2 diabetes and controls. Clinica Chimica Acta, 411, 433–437.CrossRefGoogle Scholar
  25. 25.
    Liu, K., Paterson, A. J., Konard, R. J., et al. (2002). Streptozotocin, an O-Glc NAcase inhibitor, blunts insulin and growth hormone secretion. Molecular and Cellular Endocrinology, 194, 135–146.CrossRefGoogle Scholar
  26. 26.
    Mueckler, M. (1994). Facilitative glucose transporters. European Journal of Biochemistry, 219, 713–725.CrossRefGoogle Scholar
  27. 27.
    Hundal, H. S., Ramlal, T., Reyes, R., et al. (1992). Cellular mechanism of Metformin action involves glucose transporter translocation from an intracellular pool to the plasma membrane in L6 muscles cells. Endocrinology, 131, 1165–1173.CrossRefGoogle Scholar
  28. 28.
    Galuska, D., Nolte, L. A., Zierath, J. R., et al. (1994). Effects of Metformin on insulin-stimulated glucose transport in isolated skeletal muscles obtained from patients with NIDDM. Diabetologia, 37, 826–832.CrossRefGoogle Scholar
  29. 29.
    Giannarelli, R., Aragona, M., Coppelli, A., et al. (2003). Reducing insulin resistance with metformin, the evidence today. Diabetes & Metabolism, 29, S628–S635.CrossRefGoogle Scholar
  30. 30.
    Reynolds, T. (1998). Aloe vera, what are the active ingredients? Proceedings of the Active Ingredients Conference, Paris, 1998, 85–93.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Rajiv Kumar
    • 1
    • 3
  • Bhavna Sharma
    • 2
  • Neha R. Tomar
    • 1
  • Partha Roy
    • 2
  • Atul K. Gupta
    • 1
  • Anil Kumar
    • 1
    Email author
  1. 1.Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and HumanitiesG.B. Pant University of Agriculture and TechnologyPantnagarIndia
  2. 2.Department of BiotechnologyIndian Institute of TechnologyRoorkeeIndia
  3. 3.Animal Biotechnology SectionCSWRIVia-JaipurIndia

Personalised recommendations