Applied Biochemistry and Biotechnology

, Volume 164, Issue 7, pp 1215–1224 | Cite as

Disruption of Chlorella vulgaris Cells for the Release of Biodiesel-Producing Lipids: A Comparison of Grinding, Ultrasonication, Bead Milling, Enzymatic Lysis, and Microwaves

  • Hongli Zheng
  • Jilong Yin
  • Zhen GaoEmail author
  • He Huang
  • Xiaojun Ji
  • Chang Dou


A comparative evaluation of different cell disruption methods for the release of lipids from marine Chlorella vulgaris cells was investigated. The cell growth of C. vulgaris was observed. Lipid concentrations from different disruption methods were determined, and the fatty acid composition of the extracted lipids was analyzed. The results showed that average productivity of C. vulgaris biomass was 208 mg L−1 day−1. The lipid concentrations of C. vulgaris were 5%, 6%, 29%, 15%, 10%, 7%, 22%, 24%, and 18% when using grinding with quartz sand under wet condition, grinding with quartz sand under dehydrated condition, grinding in liquid nitrogen, ultrasonication, bead milling, enzymatic lysis by snailase, enzymatic lysis by lysozyme, enzymatic lysis by cellulose, and microwaves, respectively. The shortest disruption time was 2 min by grinding in liquid nitrogen. The unsaturated and saturated fatty acid contents of C. vulgaris were 71.76% and 28.24%, respectively. The extracted lipids displayed a suitable fatty acid profile for biodiesel [C16:0 (~23%), C16:1 (~23%), and C18:1 (~45%)]. Overall, grinding in liquid nitrogen was identified as the most effective method in terms of disruption efficiency and time.


Microalga Lipid concentration Cell disruption 



The authors would like to thank Prof. Walter K. Johnson from Brigham Young University for the assistance in polishing the English language of this study. This work was funded by the Key Program of National Natural Science Foundation of China (no. 20936002), the National Basic Research Program of China (nos. 2007CB707805, 2009CB724700, and 2011CB200906), the Fifth of Six Projects Sponsoring Talent Summits of Jiangsu Province (no. 2008-D-63), the College Industrialization Project of Jiangsu Province (no. JH09-30), the Fok Ying Tung Education Foundation (no. 123014), and the Program for New Century Excellent Talents in University from the Ministry of Education of China (no. NCET-09-0157).


  1. 1.
    Chisti, Y. (2007). Biotechnology Advances, 25, 294–306.CrossRefGoogle Scholar
  2. 2.
    Reijnders, L. (2008). Trends in Biotechnology, 26, 349–350.CrossRefGoogle Scholar
  3. 3.
    Silva, T. L., Reis, A., Medeiros, R., Oliveira, A. C., & Gouveia, L. (2009). Applied Biochemistry and Biotechnology, 159(2), 568–578.CrossRefGoogle Scholar
  4. 4.
    Am, A. S., & Ya, M. T. L. (1993). Biologia Plantarum, 35, 629–632.CrossRefGoogle Scholar
  5. 5.
    Belarbi, E. H., Molina, E., & Chisti, Y. (2000). Enzyme and Microbial Technology, 26, 516–529.CrossRefGoogle Scholar
  6. 6.
    Schumann, R., Häubner, N., Klausch, S., & Karsten, U. (2005). International Biodeterioration & Biodegradation, 55, 213–222.CrossRefGoogle Scholar
  7. 7.
    Fu, C. C., Hung, T. C., Chen, J. Y., Su, C. H., & Wu, W. T. (2010). Bioresource Technology, 101, 8750–8754.CrossRefGoogle Scholar
  8. 8.
    Fan, L. H., Zhang, Y. T., Zhang, L., & Chen, H. L. (2008). Journal of Membrane Science, 325, 336–345.CrossRefGoogle Scholar
  9. 9.
    Collos, Y., Mornet, F., Sciandra, A., Waser, A. N., Larson, A., & Harrison, P. J. (1999). Journal of Applied Phycology, 11, 179–184.CrossRefGoogle Scholar
  10. 10.
    Bligh, E. G., & Dyer, W. M. (1959). Canadian Journal of Biochemistry and Physiology, 37, 911–917.CrossRefGoogle Scholar
  11. 11.
    Metchalfe, L. D., & Schmitz, A. A. (1961). Analytical Chemistry, 33, 363–372.CrossRefGoogle Scholar
  12. 12.
    Jin, M. J., Huang, H., Xiao, A. H., Zhang, K., Liu, X., Li, S., et al. (2008). Biotechnological Letters, 30, 1087–1091.CrossRefGoogle Scholar
  13. 13.
    Enrique, V. E., Roberto, M. N., & Filiberto, N. C. (2002). Aquacultural Engineering, 25, 207–216.CrossRefGoogle Scholar
  14. 14.
    Jiřĺ, D., František, S., & Karel, L. (2005). Journal of Applied Phycology, 17, 403–412.CrossRefGoogle Scholar
  15. 15.
    Ho, C. W., Tan, W. S., Kamaruddin, S., Ling, T. C., & Tey, B. T. (2008). Biotechnology and Applied Biochemistry, 50, 49–59.CrossRefGoogle Scholar
  16. 16.
    Maunders, M. J., & Brown, S. B. (1983). Planta, 158, 309–311.CrossRefGoogle Scholar
  17. 17.
    Pernet, F., & Tremblay, R. (2003). Lipids, 38, 1191–1195.CrossRefGoogle Scholar
  18. 18.
    Bermejo Román, R., Talavera, E. M., & Alvarez-Pez, J. M. (2001). Journal of Chromatography A, 917, 135–145.CrossRefGoogle Scholar
  19. 19.
    Geciova, J., Bury, D., & Jelen, P. (2002). International Dairy Journal, 12, 541–553.CrossRefGoogle Scholar
  20. 20.
    Wang, L. J., & Weller, C. L. (2006). Trends in Food Science & Technology, 17, 300–312.CrossRefGoogle Scholar
  21. 21.
    Rashid, U., Anwar, F., Moser, B. R., & Knothe, G. (2008). Bioresource Technology, 99, 8175–8179.CrossRefGoogle Scholar
  22. 22.
    Demirbas, A. (2009). Energy Conversion and Management, 50, 14–34.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hongli Zheng
    • 1
  • Jilong Yin
    • 1
  • Zhen Gao
    • 2
    Email author
  • He Huang
    • 1
  • Xiaojun Ji
    • 1
  • Chang Dou
    • 1
  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing University of TechnologyNanjingPeople’s Republic of China
  2. 2.College of Food Science and Light IndustryNanjing University of TechnologyNanjingPeople’s Republic of China

Personalised recommendations