Advertisement

Applied Biochemistry and Biotechnology

, Volume 164, Issue 7, pp 979–990 | Cite as

Fermentation Characteristics of Mortierella alpina in Response to Different Nitrogen Sources

  • Jinmiao Lu
  • Chao Peng
  • Xiao-Jun Ji
  • Jiangying You
  • Leilei Cong
  • Pingkai Ouyang
  • He Huang
Article

Abstract

The fermentation characteristics of Mortierella alpina were investigated in response to various nitrogen sources. Influences on nitrogen source and glucose uptake rate, mycelial morphology of M. alpina, and pH of medium in relation to different nitrogen sources were discussed. Effects of different nitrogen sources on cell growth, fatty acid composition, arachidonic acid (ARA), and total lipid concentration were also evaluated. It revealed that the maximum nitrogen source uptake ratio was obtained when corn steep liquor was used as nitrogen source. When yeast extract was used as the sole nitrogen source, glucose was completely exhausted at the end of fermentation. The maximum dry cell weight obtained from medium with yeast extract as nitrogen source had the highest total lipid concentration. Sodium nitrate was the favorable nitrogen source for ARA accumulation, and the highest ARA percentage in total fatty acids was obtained, 35.9%. Urea was identified as the favorable nitrogen source for ARA production, the highest ARA concentration obtained from urea was 5.8 g/l. Compared with inorganic nitrogen sources, organic nitrogen compounds are favorable for both cell growth and total lipids accumulation.

Keywords

Arachidonic acid Mortierella alpina Nitrogen source Fermentation characteristics 

Notes

Acknowledgments

This work was financially supported by the Key Program of National Natural Science Foundation of China (No. 20936002), the National Basic Research Program of China (Nos. 2007CB707805 and 2009CB724700), the Fifth of Six Projects Sponsoring Talent Summits of Jiangsu Province (No. 2008-D-63), the College Industrialization Project of Jiangsu Province (No. JH09-30), the Fok Ying Tung Education Foundation (No. 123014), and the Program for New Century Excellent Talents in University from the Ministry of Education of China (No. NCET–09–0157).

References

  1. 1.
    Calder, P. C. (2001). Polyunsaturated fatty acids, inflammation and immunity. Lipids, 36, 1007–1024.CrossRefGoogle Scholar
  2. 2.
    Fontani, G., Corradeschi, F., Felici, A., Alfatti, F., Migliorini, S., & Lodi, L. (2005). Cognitive and physiological effects of w-3 polyunsaturated fatty acid supplementation in healthy subjects. European Journal of Clinical Investment, 35(11), 691–699.CrossRefGoogle Scholar
  3. 3.
    Maclean, C. H., Newberry, S. J., Mojica, W. A., Khanna, P., Issa, A. M., Suttorp, M. J., et al. (2006). Effects of omega-3 fatty acids on cancer risk: A systematic review. Journal of the American Medical Association, 295(4), 403–415.CrossRefGoogle Scholar
  4. 4.
    Siddiqui, R. A., Shaikh, S. R., Sech, L. A., Yount, H. R., Stillwell, W., & Zaloga, G. P. (2004). Omega 3-fatty acids: Health benefits and cellular mechanisms of action. Mini Reviews in Medicinal Chemistry, 4(8), 859–871.Google Scholar
  5. 5.
    Gill, I., & Valivety, R. (1997). Polyunsaturated fatty acid: Part 1. Occurrence, biological activities and applications. Trends in Biotechnology, 15(10), 401–409.CrossRefGoogle Scholar
  6. 6.
    Glomset, J. A. (1985). Fish fatty acids and human health. The New England Journal of Medicine, 312, 1353–1354.CrossRefGoogle Scholar
  7. 7.
    Phillipson, B. E., Rothrock, D. W., Conor, W. E., Harris, W. S., & Illingwort, D. R. (1985). Reduction of plasma lipids, lipoproteins and apolipoproteins by dietary fish oils in patients with hypertriglyceridemia. The New England Journal of Medicine, 312, 1210–1216.CrossRefGoogle Scholar
  8. 8.
    Wong, S. H., Nestel, P. J., Trimble, R. P., Storer, G. B., Illman, I. J., & Topping, D. L. (1984). The adaptive effects of dietary fish and safflower oil on lipid and lipoprotein metabolism in perfused rat liver. Biochimica et Biophysica Acta, 792(2), 103–109.Google Scholar
  9. 9.
    Certik, M., & Shimizu, S. (2000). Kinetic analysis of oil biosynthesis by an arachidonic acid-producing fungus, Mortierella alpina 1S-4. Applied Microbiology and Biotechnology, 54(2), 224–230.CrossRefGoogle Scholar
  10. 10.
    Chang, C. C., & Chen, H. C. (1994). Arachidonic acid production by Mortierella alpina. Journal of the Chinese Agricultural Chemical Society, 32, 395–405.Google Scholar
  11. 11.
    Singh, A., & Ward, O. P. (1997). Production of high yields of arachidonic acid in a fed-batch system by Mortierella alpina ATCC 32222. Applied Microbiology and Biotechnology, 48(15), 1–5.CrossRefGoogle Scholar
  12. 12.
    Bajpai, P. K., & Bajpai, P. (1992). Review: Arachidonic acid production by microorganisms. Biotechnology and Applied Biochemistry, 15(1), 1–10.Google Scholar
  13. 13.
    Jang, H. D., Lin, Y. Y., & Yang, S. S. (2005). Effect of culture media and conditions on polyunsaturated fatty acids production by Mortierella alpina. Bioresource Technology, 96(15), 1633–1644.CrossRefGoogle Scholar
  14. 14.
    Li, Y. Q., Horsman, M., Wang, B., Wu, N., & Lan, C. Q. (2008). Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology, 81(4), 629–636.CrossRefGoogle Scholar
  15. 15.
    Steinerm. (1959). The utilization of amino and amide nitrogen by Endomycopsis vernalis and other yeasts. Symposia of the Society for Experimental Biology, 13, 177–192.Google Scholar
  16. 16.
    Witter, B., & Steinerm, D. (1974). Die lipide von endomycopsis cernalis bei verschiedener stickstoff-ernahrung. Archives of Microbiology, 101, 321–335.CrossRefGoogle Scholar
  17. 17.
    Shang, F., Wen, S. H., Wang, X., & Tan, T. W. (2006). Effect of nitrogen limitation on the ergosterol production by fed-batch culture of Saccharomyces cerevisiae. Journal of Biotechnology, 122(3), 285–292.CrossRefGoogle Scholar
  18. 18.
    Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917.CrossRefGoogle Scholar
  19. 19.
    Metchalfe, L. D., & Schmitz, A. R. A. (1961). The rapid preparation of fatty acid esters for gas chromatographic analysis. Analytical Chemistry, 33(3), 363–372.CrossRefGoogle Scholar
  20. 20.
    Jin, M. J., Huang, H., Zhang, K., Yan, J., & Gao, Z. (2007). Metabolic flux analysis on arachidonic acid fermentation. Journal of Chemical Engineering Chinese University, 21(2), 316–321.Google Scholar
  21. 21.
    Kates, M., & Baxter, R. M. (1962). Lipid composition of mesophilic and psychrophilic yeasts as influenced by environmental temperature. Canadian Journal of Biochemistry and Physiology, 40, 1213–1227.CrossRefGoogle Scholar
  22. 22.
    Metz, B., & Kossen, N. W. F. (1977). The growth of molds in the form of pellets — a literature review. Biotechnology and Bioengineering, 19(6), 781–799.CrossRefGoogle Scholar
  23. 23.
    Solomons, G. L. (1975). In J. Smith & D. Berry (Eds.), The filamentous fungi, Vol 1. Industrial mycology (pp. 249–264). London: E. Arnold.Google Scholar
  24. 24.
    Evanas, T., & Ratledge, C. (1984). Phosphofructokinase and the regulation of the flux of carbon from glucose to lipid in the oleaginous yeast Rhodospovidium tovuloides. Journal of General Microbiology, 130, 1693.Google Scholar
  25. 25.
    Stredanskẚ, S., & Šajbidojr, J. (1993). Influence of carbon and nitrogen sources on the lipid accumulation and arachidonic acid production by Mortierella alpina. Acta Biotechnologie, 13(2), 185–191.CrossRefGoogle Scholar
  26. 26.
    Chen, H. C., Chang, C. C., & Chen, C. X. (1997). Optimization of arachidonic acid production by Mortierella alpina Wuji-H4 isolate. Journal of the American Oil Chemists’ Society, 74(5), 569–578.CrossRefGoogle Scholar
  27. 27.
    Koike, Y., Cai, H. J., Higashiyama, K., Fujikawa, S., & Park, E. Y. (2001). Effect of consumed carbon to nitrogen ratio on mycelial morphology and arachidonic acid production in cultures of Mortierella alpina. Journal of Bioscience and Bioengineering, 91(4), 382–389.CrossRefGoogle Scholar
  28. 28.
    Eroshin, V. K., Satroutdinov, A. D., Dedyukhina, E. G., & Chistyakova, T. I. (2000). Arachidonic acid production by Mortierella alpina with growth-coupled lipid synthesis. Process Biochemistry, 35(10), 1171–1175.CrossRefGoogle Scholar
  29. 29.
    Zhu, M., Yu, L. J., Li, W., Zhou, P. P., & Li, C. Y. (2006). Optimization of arachidonic acid production by fed-batch culture of Mortierella alpina based on dynamic analysis. Enzyme and Microbial Technology, 38(6), 735–740.CrossRefGoogle Scholar
  30. 30.
    Park, E. Y., Koikjz, Y., Higashiyama, K., Fujikawa, S., & Okabe, M. (1999). Effect of nitrogen source on mycelial morphology and arachidonic acid production in cultures of Mortierella alpina. Journal of Bioscience and Bioengineering, 88(1), 61–67.CrossRefGoogle Scholar
  31. 31.
    Higashiyama, K., Yaguchi, T., Akimoto, K., Fujikawa, S., & Shimizu, S. (1998). Effects of mineral addition on the growth morphology of an arachidonic acid production by Mortierella alpina 1S-4. Journal of the American Oil Chemists’ Society, 75(12), 1815–1819.CrossRefGoogle Scholar
  32. 32.
    Vardar, F. (1983). Problems of mass transfer and momentum transfer in large fermenters. Process Biochemistry, 18(5), 21–23.Google Scholar
  33. 33.
    Matsushima, K., Hayakawa, M., Ito, M., & Stimada, K. (1981). Features of the proteolytic enzyme system of hyper-acid productive and non-acid-productive fungi. The Journal of General and Applied Microbiology, 27, 423–426.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jinmiao Lu
    • 1
  • Chao Peng
    • 1
  • Xiao-Jun Ji
    • 1
  • Jiangying You
    • 1
  • Leilei Cong
    • 1
  • Pingkai Ouyang
    • 1
  • He Huang
    • 1
  1. 1.College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical EngineeringNanjing University of TechnologyNanjingPeople’s Republic of China

Personalised recommendations