Applied Biochemistry and Biotechnology

, Volume 164, Issue 4, pp 546–559 | Cite as

Effects of Radiofrequency Electromagnetic Wave Exposure from Cellular Phones on the Reproductive Pattern in Male Wistar Rats

  • Kavindra Kumar Kesari
  • Sanjay Kumar
  • Jitendra Behari
Article

Abstract

The present study investigates the effect of free radical formation due to mobile phone exposure and effect on fertility pattern in 70-day-old male Wistar rats (sham exposed and exposed). Exposure took place in Plexiglas cages for 2 h a day for 35 days to mobile phone frequency. The specific absorption rate was estimated to be 0.9 W/kg. An analysis of antioxidant enzymes glutathione peroxidase (P < 0.001) and superoxide dismutase (P < 0.007) showed a decrease, while an increase in catalase (P < 0.005) was observed. Malondialdehyde (P < 0.003) showed an increase and histone kinase (P = 0.006) showed a significant decrease in the exposed group. Micronuclei also show a significant decrease (P < 0.002) in the exposed group. A significant change in sperm cell cycle of G0–G1 (P = 0.042) and G2/M (P = 0.022) were recorded. Generation of free radicals was recorded to be significantly increased (P = 0.035). Our findings on antioxidant, malondialdehyde, histone kinase, micronuclei, and sperm cell cycle are clear indications of an infertility pattern, initiated due to an overproduction of reactive oxygen species. It is concluded that radiofrequency electromagnetic wave from commercially available cell phones might affect the fertilizing potential of spermatozoa.

Keywords

Microwave radiation Histone kinase Cell cycle Flow cytometry Reactive oxygen species Apoptosis 

Notes

Acknowledgement

The authors are thankful to the Indian Council of Medical Research, New Delhi, for the financial assistance.

References

  1. 1.
    Skakkebaek, N. E., Jorgensen, N., & Main, K. M. (2006). Is human fecundity declining? International Journal of Andrology, 29, 2–11.CrossRefGoogle Scholar
  2. 2.
    Sallmen, M., Weinberg, C. R., Baird, D. D., Lindbohm, M. L., & Wilcox, A. J. (2005). Has human fertility declined over time? Why we may never know. Epidemiology, 16, 494–499.CrossRefGoogle Scholar
  3. 3.
    Cleary, S. F. (1995). Reproductive toxic effects of electromagnetic radiation. In R. J. Witorsch (Ed.), Reproductive toxicology (2nd ed., pp. 263–280). New York: Raven.Google Scholar
  4. 4.
    Akdag, M. Z., Celik, M. S., Ketani, A., Nergiz, Y., Deniz, M., & Dasdag, S. (1999). Effect of chronic low-intensity microwave radiation on sperm count, sperm morphology, and testicular and epididymal tissues of rats. Electro- and Magnetobiology, 18, 133–145.Google Scholar
  5. 5.
    Kesari, K. K., & Behari, J. (2010). Effect of microwave at 2.45 GHz radiations on reproductive system of male rats. Toxicological and Environmental Chemistry, 92, 1135–1147.CrossRefGoogle Scholar
  6. 6.
    Paulraj, R., & Behari, J. (2006). Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutation Research, 596, 76–80.Google Scholar
  7. 7.
    Kunjilwar, K. K., & Behari, J. (1993). Effect of amplitude-modulated radio frequency radiation on cholinergic system of developing rats. Brain Research, 601, 321–324.CrossRefGoogle Scholar
  8. 8.
    Sarkar, S., Ali, S., & Behari, J. (1994). Effect of low power microwave on the mouse genome: A direct DNA analysis. Mutation Research, 320, 141–147.CrossRefGoogle Scholar
  9. 9.
    Malyapa, R. S., Ahern, E. W., Straube, W., Moros, E. G., Pickard, W. F., & Roti, J. L. (1997). Measurement of DNA damage after exposure to electromagnetic radiation in the cellular phone communication frequency band (835.62 and 847.74 MHz). Radiation Research, 148, 618–627.CrossRefGoogle Scholar
  10. 10.
    Khillare, B., & Behari, J. (1998). Effect of amplitude modulated radio frequency radiation on reproduction pattern in rats. Electro- and Magnetobiology, 17, 43.Google Scholar
  11. 11.
    Dasdag, S., Ketani, M. A., Akdag, Z., Ersay, A. R., Sari, I., & Demirtas, O. C. (1999). Whole-body microwave exposure emitted by cellular phones and testicular function of rats. Urology Research, 27, 219–223.CrossRefGoogle Scholar
  12. 12.
    Salama, N., Kishimoto, T., & Kanayama, H. (2003). Effects of exposure to a mobile phone on testicular function and structure in adult rabbit. International Journal of Andrology, 33, 88–94.CrossRefGoogle Scholar
  13. 13.
    Behari, J., & Kesari, K. K. (2006). Effects of microwave radiations on reproductive system of male rats. Embryo Talk, 1, 81–85.Google Scholar
  14. 14.
    Erogul, O., Oztas, E., Yildirim, I., Kir, T., Aydur, E., & Komesli, G. (2006). Effects of electromagnetic radiation from a cellular phone on human sperm motility: An in vitro study. Arch Medical Research, 37, 840–843.CrossRefGoogle Scholar
  15. 15.
    Giwercman, A., Richthoff, J., Hjollund, H., Bonde, J. P., Jepson, K., & Frohm, B. (2003). Correlation between sperm motility and sperm chromatin structure assay parameters. Fertility and Sterility, 80, 1404–1412.CrossRefGoogle Scholar
  16. 16.
    Agarwal, A., Deepinder, F., Sharma, R. K., Ranga, G., & Li, J. (2008). Effect of cell phone usage on semen analysis in men attending infertility clinic: An observational study. Fertility and Sterility, 89, 124–128.CrossRefGoogle Scholar
  17. 17.
    Spano, M., & Evenson, D. P. (1993). Flow cytometric analysis for reproductive biology. Biology of the Cell, 78, 53–62.CrossRefGoogle Scholar
  18. 18.
    Nunez, R. (2001). DNA measurement and cell cycle analysis by flow cytometry. Current Issues in Molecular Biology, 3, 67–70.Google Scholar
  19. 19.
    Rosenthal, G., & Obe, G. (1989). Effects of 50 Hz electromagnetic fields on proliferation and on chromosome alterations in human peripheral lymphocytes untreated or pretreated with chemical mutagens. Mutation Research, 210, 329–335.Google Scholar
  20. 20.
    Antonopoulos, B., Yang, A., Stamm, W., Heller, D., & Obe, G. (1995). Cytological effects of 50 Hz electromagnetic fields on human lymphocytes in vitro. Mutation Research, 346, 151–157.CrossRefGoogle Scholar
  21. 21.
    Liburdy, W. L. (1997). Laboratory studies on extremely low frequency (50/60 Hz) magnetic fields and carcinogenesis. In R. G. Stevens, B. W. Wilson, & L. E. Anderson (Eds.), The melatonin hypothesis. Breast cancer and use of electric power (pp. 585–667). Columbus: Batelle.Google Scholar
  22. 22.
    Kesari, K. K., & Behari, J. (2010). Microwave exposure affecting reproductive system in male rats. Applied Biochemistry and Biotechnology, 162, 416–428.CrossRefGoogle Scholar
  23. 23.
    Kumar, S., Kesari, K., & Behari, J. (2010). Influence of microwave exposure on fertility of male rats. Fertility Sterility. doi: 10.1016/j.fertnstert.2010.04.078.Google Scholar
  24. 24.
    Criswell, K. A., Krishna, G., Zielinski, D., Urda, G. A., Theiss, J. C., Juneau, P., et al. (1998). Use of acridine orange in: Flow cytometric assessment of micronuclei induction. Mutation Research, 414, 63–75.Google Scholar
  25. 25.
    Oldendorf, W. H. (1960). Focal neurological lesions produced by microwave irradiation. Proceedings of the Society for Experimental Biology and Medicine I, 72, 432.Google Scholar
  26. 26.
    Tolgskaya, M. S., & Gordon, Z. V. (1959). Morphological changes in animals exposed to 10 cm microwaves. Vop Kurortol Fizioter. Lech. fiz. Kul’t, 1, 21.Google Scholar
  27. 27.
    Kalina, M., Socher, R., Rotem, R., & Naor, Z. (1995). Ultrastructural localization of protein kinase C in human sperm. Journal of Histochem Cytochem, 43, 439–445.CrossRefGoogle Scholar
  28. 28.
    Rotem, R., Paz, G. F., Hommonai, Z. T., Kalina, M., & Naor, Z. (1990). PKC is present in human sperm: Possible role in flagellar motility. Proceedings of National Academy of Science, USA, 87, 7305–7308.CrossRefGoogle Scholar
  29. 29.
    Balci, M., Devrim, E., & Durak, I. (2007). Effects of mobile phones on oxidant/antioxidant balance in cornea and lens of rats. Current Eye Research, 32, 21–25.CrossRefGoogle Scholar
  30. 30.
    Ray, S., & Behari, J. (1990). Physiological changes in rats after exposure to low levels of microwaves. Radiation Research, 125, 199–201.CrossRefGoogle Scholar
  31. 31.
    Kesari, K. K., Kumar, S., & Behari, J. (2010). Mobile phone usage and male infertility in Wistar rats. Indian Journal of Experimental Biology, 48, 987–992.Google Scholar
  32. 32.
    Narayanan, S. N., Kumar, R. S., Potu, B. K., Nayak, S., & Maneesh, M. (2009). Spatial memory performance of Wistar rats exposed to mobile phone. Clinics, 64, 231–234.CrossRefGoogle Scholar
  33. 33.
    Durney, C. H., Iskander, M. F., Massoudi, H., & Johnson, C. C. (1984). An empirical formula for broad band SAR calculations of prolate spheroidal models of humans and animal. In J. M. Osepchuk (Ed.), Biological effects of electromagnetic radiation (pp. 85–90). New York: IEEE Press.Google Scholar
  34. 34.
    Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302–310.CrossRefGoogle Scholar
  35. 35.
    Lowry, O. H., Resebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin-phenol reagent. Journal of Biochemistry, 193, 265–275.Google Scholar
  36. 36.
    Hayashi, I., Morishita, Y., Imai, K., Nakamura, M., Nakachi, K., & Hayashi, T. (2007). High-throughput spectrophotometric assay of reactive oxygen species in serum. Mutation Research, 631, 55–61.Google Scholar
  37. 37.
    Macleod, J. (1943). The role of oxygen in the metabolism and motility of human spermatozoa. The American Journal of Physiology, 138, 512–518.Google Scholar
  38. 38.
    Aitken, R. J., Harkiss, D., & Buckingham, D. (1993). Relationship between iron catalyzed lipid-peroxidation potential and human sperm function. Journal of Reproductive Fertility, 98, 257–265.CrossRefGoogle Scholar
  39. 39.
    Aitken, R. J., Irvine, D. S., & Wu, F. C. (1991). Prospective analysis of spermoocyte fusion and reactive oxygen species generation as criteria for the diagnosis of infertility. Journal of Obstetrics & Gynecology, 164, 542–551.Google Scholar
  40. 40.
    Sukcharoen, N., Keith, J., Irvine, D. S., & Aitken, R. J. (1995). Predicting the fertilizing potential of human sperm suspensions in-vitro—Importance of sperm morphology and leukocyte contamination. Fertility and Sterility, 63, 1293–1300.Google Scholar
  41. 41.
    Pasqualotto, F. F., Sharma, R. K., Nelson, D. R., Thomas, A. J., & Agarwal, A. (2000). Relationship between oxidative stress, semen characteristics, and clinical diagnosis in men undergoing infertility investigation. Fertility and Sterility, 73, 459–464.CrossRefGoogle Scholar
  42. 42.
    Shen, H. M., & Ong, C. N. (2000). Detection of oxidative DNA damage in human sperm and its association with sperm function and male infertility. Free Radical Biology & Medicine, 2, 529–536.CrossRefGoogle Scholar
  43. 43.
    Agarwal, A., Saleh, R. A., & Bedaiwy, M. A. (2003). Role of reactive oxygen species in the pathophysiology of human reproduction. Fertility and Sterility, 79, 829–843.CrossRefGoogle Scholar
  44. 44.
    Kumar, S., Kesari, K. K., & Behari, J. (2010). Evaluation of genotoxic effects in male Wistar rats following microwave exposure. Indian Journal of Experimental Biology, 48, 586–592.Google Scholar
  45. 45.
    Ydon, L., Petit, L., Delagrange, P., Strosberg, A. D., & Jockers, R. (2000). Functional expression of MT2 (Mel 1b) melatonin receptors in human PAZ6 adipocytes. Endocrinology, 142, 4264–4271.Google Scholar
  46. 46.
    Lai, H., & Singh, N. P. (1996). Double strand breaks in rats brain cells after acute exposure to radio frequency electromagnetic radiation. International Journal of Radiation Biology, 69, 513–521.CrossRefGoogle Scholar
  47. 47.
    Kesari, K. K., Behari, J., & Kumar, S. (2010). Mutagenic response of 2.45 GHz radiation exposure on rat brain. International Journal of Radiation Biology, 86, 334–343.CrossRefGoogle Scholar
  48. 48.
    Kesari, K. K., & Behari, J. (2009). Fifty-gigahertz microwave exposure effect of radiations on rat brain. Applied Biochemistry and Biotechnology, 158, 126–139.CrossRefGoogle Scholar
  49. 49.
    Agarwal, A., Desai, N. R., Makker, K., Varghese, A., Mouradi, R., & Sabanegh, E. (2009). Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: An in vitro pilot study. Fertility and Sterility, 92, 1318–1325.CrossRefGoogle Scholar
  50. 50.
    Dasdag, S., Akdag, M. Z., & Aksen, F. (2003). Whole body exposure of rats to microwaves emitted from a cell phone does not affect the testes. Bioelectromagnetics, 24, 182–188.CrossRefGoogle Scholar
  51. 51.
    Vijayalaxmi, & Obe, G. (2004). Controversial cytogenetic observations in mammalian somatic cells exposed to radiofrequency radiation. Radiation Research, 162, 481–496.CrossRefGoogle Scholar
  52. 52.
    Sakuma, N., Komatsubara, Y., Takeda, H., Hirose, H., Sekijima, M., Nojima, T., et al. (2006). DNA strand breaks are not induced in human cells exposed to 2.1425 GHz band CW and W-CDMA modulated radiofrequency fields allocated to mobile radio base stations. Bioelectromagnetics, 27, 51–57.CrossRefGoogle Scholar
  53. 53.
    Alvarez, J. G., Touchstone, C. J., Blasco, L., & Storey, B. T. (1987). Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. SOD as major enzyme protectant against oxygen toxicity. Journal of Andrology, 8, 33–89.Google Scholar
  54. 54.
    Condell, R. A., & Tappel, A. L. (1993). Evidence for suitability of glutathione peroxidase as a protective enzyme: Studies of oxidative damage, restoration and proteolysis. Archive Biochemistry Biophysics, 223, 407.CrossRefGoogle Scholar
  55. 55.
    Russo, A., Troncoso, N., Sanchez, F., & Vanella, A. (2006). Propolis protects human spermatozoa from DNA damage caused by benzopyrene and exogenous reactive oxygen species. Life Sciences, 78, 1401–1406.CrossRefGoogle Scholar
  56. 56.
    Amara, S., Abdelmelek, H., Garrel, C., Douki, T., Ravanat, J. L., Favier, A., et al. (2006). Effects of subchronic exposure to static magnetic field on testicular function in rats. Archives of Medical Research, 37, 947–952.CrossRefGoogle Scholar
  57. 57.
    Reiter, R. J. (1997). Melatonin aspects of exposure to low frequency electric and magnetic fields. In J. C. Lin (Ed.), Advances in electromagnetic fields in living systems (Vol. 2, pp. 1–27). New York: Plenum.Google Scholar
  58. 58.
    Dunphy, W. G., Brizuela, L., & Beach, D. (1988). The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell, 54, 423–431.CrossRefGoogle Scholar
  59. 59.
    Gautier, J., Norbury, C., Lohka, M., Nuese, P., & Mailer, J. (1988). Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2. Cell, 54, 433–439.CrossRefGoogle Scholar
  60. 60.
    Pawse, A. R., Margery, G. O., & Stocken, L. A. (1971). Histone kinase and cell division. Biochemistry Journal, 122, 713–719.Google Scholar
  61. 61.
    Ozturk, M. A., Karcaaltincaba, M., & Criss, W. E. (1993). Cell cycle control part I cdc related kinases. Journal of Islamic Academy of Sciences, 6, 311–318.Google Scholar
  62. 62.
    Garaj-Vrhovac, V., Fucic, A., & Horvat, D. (1992). The correlation between the frequency of micronuclei and specific chromosome aberrations in human lymphocytes exposed to microwave radiation in vitro. Mutation Research, 281, 181–186.CrossRefGoogle Scholar
  63. 63.
    Kim, J. Y., Kim, H. T., Moon, K. H., & Shin, H. J. (2007). Long-term exposure of rats to a 2.45 GHz electromagnetic field: Effects on reproductive function. Korean Journal of Urology, 48, 1308–1314.CrossRefGoogle Scholar
  64. 64.
    Lee, J. S., Ahn, S. S., Jung, K. C., Kim, Y. W., & Lee, S. K. (2004). Effects of 60 Hz electromagnetic field exposure on testicular germ cell apoptosis in mice. Asian Journal of Andrology, 6, 29–34.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kavindra Kumar Kesari
    • 1
  • Sanjay Kumar
    • 1
  • Jitendra Behari
    • 1
  1. 1.Bioelectromagnetic Laboratory, School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations