Applied Biochemistry and Biotechnology

, Volume 164, Issue 4, pp 454–463

Investigating the Structural and Functional Effects of Mutating Asn Glycosylation Sites of Horseradish Peroxidase to Asp

Article

Abstract

Horseradish peroxidase (HRP) has long attracted intense research interest and is used in many biotechnological fields, including diagnostics, biosensors, and biocatalysis. Enhancement of HRP catalytic activity and/or stability would further increase its applications. One of the problems with heterologus expression of HRP especially in prokaryotic host is lack of glycosylation that affects it's stability toward H2O2 and thermal inactivation. In this study, two asparagine residues which constitute two of the eight glycosylation sites in native HRP (Asn 13 and 268) with respectively 83% and 65% surface accessibility were substituted with aspartic acid in recombinant HRP. Both mutant proteins expressed in Escherichia coli showed increased stabilities against heat (increase in t1/2 from 20 min in native rHRP to 32 and 67 min in N13D and N268D) and H2O2 (up to threefold). Unexpectedly, despite the distance of the mutated positions from the active site, notable alterations in steady-state kcat and Km values occurred with phenol/4-aminoantipyrine as reducing substrate which might be due to conformational changes. No significant alteration in flexibility was detected by acrylamide quenching analyses, but ANS binding experiments purposed lesser binding of ANS to hydrophobic patches in mutated HRPs. Double mutation was non-additive and non-synergistic.

Keywords

Recombinant horseradish peroxidase Site-directed mutagenesis Glycosylation site Protein stability H2O2 inactivation 

References

  1. 1.
    Levin, G., Mendive, F., Targovnik, H. M., Osvaldo, C., & María, V. M. (2005). Journal of Biotechnology, 118, 363–369.CrossRefGoogle Scholar
  2. 2.
    Gray, J. S., Yun Yang, B., & Montgomery, R. (1998). Carbohydrate Research, 311, 61–69.CrossRefGoogle Scholar
  3. 3.
    Welinder, K. G. (1979). European Journal of Biochemistry, 96, 483–502.CrossRefGoogle Scholar
  4. 4.
    Smith, A. T., Santama, N., Dacey, S., Edwards, M., Bray, R. C., Thorneley, R. N. F., et al. (1990). The Journal of Biological Chemistry, 265, 13335–13343.Google Scholar
  5. 5.
    Dunford, H. B. (1991). In J. Everse, K. E. Everse, & M. B. Grisham (Eds.), Peroxidases in chemistry and biology, vol. 2 (pp. 1–24). Boca Raton: CRC.Google Scholar
  6. 6.
    Azevedo, A. M., Martins, V. C., Prazeres, D. M. F., Vojinovic, V., Cabral, J. M. S., & Fonseca, L. P. (2003). Annual Review, 90, 199–247.Google Scholar
  7. 7.
    Colonna, S., Gaggero, N., Richelmi, C., & Pasta, P. (1999). Trends in Biotechnology, 17, 163–168.CrossRefGoogle Scholar
  8. 8.
    Veitch, N. C., & Smith, A. (2000). Advances in Inorganic Chemistry, 51, 107–161.CrossRefGoogle Scholar
  9. 9.
    Nicell, J. A., Bewtra, J. K., Biswas, N., Taylor, K. E., St. Pierre, C. C., & Taylor, K. E. (1993). Canadian Journal of Civil Engineering, 20, 725–735.CrossRefGoogle Scholar
  10. 10.
    Morawski, B., Quan, S., & Arnold, F. H. (2001). Biotechnology and Bioengineering, 76, 99–107.CrossRefGoogle Scholar
  11. 11.
    Tams, J. W., & Welinder, K. G. (1999). FEBS Letters, 421, 234–236.CrossRefGoogle Scholar
  12. 12.
    Ryan, B. J., & O’Fagain, C. (2007). Biochimie, 89, 1029–1032.CrossRefGoogle Scholar
  13. 13.
    Ryan, B. J., Carolan, N., & O’Fágáin, C. (2006). Trends in Biotechnology, 24, 355–363.CrossRefGoogle Scholar
  14. 14.
    Ryan, B. J., & O’Fagain, C. (2008). Biochimie, 90(9), 1414–1421.CrossRefGoogle Scholar
  15. 15.
    Fisher, C. L., & Pei, G. K. (1997). Biotechniques, 23, 570–574.Google Scholar
  16. 16.
    Freedman, R. B. (1995). Current Opinion in Structural Biology, 5, 85–91.CrossRefGoogle Scholar
  17. 17.
    Wulfing, C., & Plucthun, A. (1994). Journal of Molecular Biology, 242, 655–669.CrossRefGoogle Scholar
  18. 18.
    French, C., Keshavarz-Moore, E., & Ward, J. M. (1996). Enzyme and Microbial Technology, 19, 332–338.CrossRefGoogle Scholar
  19. 19.
    Grigorenko, V., Chubar, T., Kapeliuch, Y., Borchers, T., Spener, F., & Egorov, A. (1999). Biocatalysis and Biotransformation, 17, 359–379.CrossRefGoogle Scholar
  20. 20.
    Laemmli, U. K. (1970). Nature, 227, 680–685.CrossRefGoogle Scholar
  21. 21.
    Wilson, C. M. (1983). Enzymology, 91, 236–247.CrossRefGoogle Scholar
  22. 22.
    Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  23. 23.
    Pina, D. G., Shnyrova, A. V., Gavilanes, F., Rodriguez, A., Leal, F., Roig, M. G., et al. (2001). European Journal of Biochemistry, 268, 120–126.CrossRefGoogle Scholar
  24. 24.
    Veitch, N. C., & Williams, R. J. P. (1990). European Journal of Biochemistry, 189, 351–362.CrossRefGoogle Scholar
  25. 25.
    Trinder, P. (1966). Annals of Clinical Biochemistry, 6, 24–27.Google Scholar
  26. 26.
    Shanon, L. M., Kay, E., & Lew, J. Y. (1966). The Journal of Biological Chemistry, 241(9), 2166–2172.Google Scholar
  27. 27.
    Hiner, A. N. P., Hernandez-Ruiz, J., Garcia-Canovas, F., Smith, A. T., Arnao, M. B., & Acosta, M. (1995). European Journal of Biochemistry, 234, 506–512.CrossRefGoogle Scholar
  28. 28.
    Eftink, M. R., & Ghiron, C. A. (1976). Biochemistry, 16, 5546–5551.CrossRefGoogle Scholar
  29. 29.
    Yang, B. Y., Gray, J. S. S., & Montgomery, R. (1996). Carbohydrate Research, 287, 203–212.CrossRefGoogle Scholar
  30. 30.
    Veitch, N. C. (2004). Phytochemistry, 65, 249–259.CrossRefGoogle Scholar
  31. 31.
    Olden, K., Bernard, B. A., Humphries, M. J., Yeo, T. K., Yeo, K. T., White, S. L., et al. (1985). Trends in Biochemical Sciences, 12, 78–82.CrossRefGoogle Scholar
  32. 32.
    Lin, Z., Thorsen, T., & Arnold, F. H. (1999). Biotechnology Progress, 15, 467–471.CrossRefGoogle Scholar
  33. 33.
    Yin, sh, Ding, F., & Dokholyan, N. V. (2007). Nature Methods, 4(6), 466–467.CrossRefGoogle Scholar
  34. 34.
    Tanaka, M., Ishimori, K., & Morishima, I. (1999). Biochemistry, 38, 10463–10473.CrossRefGoogle Scholar
  35. 35.
    Ryan, B. J., O’Connell, M. J., & O’Fagain, C. (2008). Biochimie, 90(9), 1389–1396.CrossRefGoogle Scholar
  36. 36.
    Nagano, S., Tanaka, M., Watanabe, Y., & Morishima, I. (1995). Biochemical and Biophysical Research Communications, 207, 417–423.CrossRefGoogle Scholar
  37. 37.
    Lipovsek, D., Antipov, E., Armstrong, K. A., Olsen, M. J., Klibanov, A. M., Tidor, B., et al. (2007). Chemistry & Biology, 14, 1176–1185.CrossRefGoogle Scholar
  38. 38.
    Hernańdez-Ruiz, J., Arnao, M. B., Hiner, A. N. P., Garcia-Cańovas, M., & Acosta, M. (2001). The Biochemical Journal, 354, 107–114.CrossRefGoogle Scholar
  39. 39.
    Hiner, A. N., Hernández-Ruiz, J., Rodríguez-López, J., Arnao, M. B., Varón, R., García-Cánovas, F., et al. (2001). Journal of Biological Inorganic Chemistry, 6, 504–516.CrossRefGoogle Scholar
  40. 40.
    Hildén, K., Hakala, T. K., Maijala, P., Lundell, T. K., & Hatakka, A. (2007). Applied Microbiology and Biotechnology, 77, 301–309.CrossRefGoogle Scholar
  41. 41.
    Mohammadian, M., Fathi-Roudsari, M., Mollania, N., Badoei-Dalfard, A., & Khajeh, K. (2010). Journal of Industrial Microbiology & Biotechnology, 37, 863–869.CrossRefGoogle Scholar
  42. 42.
    Tomazic, S. J., & Klibanov, A. M. (1988). The Journal of Biological Chemistry, 263, 3086–3091.Google Scholar
  43. 43.
    Tomazic, S. J., & Klibanov, A. M. (1988). The Journal of Biological Chemistry, 263, 3092–3096.Google Scholar
  44. 44.
    Thannhauser, T. W., & Scheraga, H. A. (1985). Biochemistry, 24, 7681–7688.CrossRefGoogle Scholar
  45. 45.
    Tyler-Cross, R., & Schirch, V. J. (1991). The Journal of Biological Chemistry, 265, 22549–22556.Google Scholar
  46. 46.
    Wright, H. T. (1991). Protein Engineering, 4, 283–294.CrossRefGoogle Scholar
  47. 47.
    Semisotnov, G. V., Rodionova, N. A., Razgulyaev, O. I., Uversky, V. N., Gripaoe, A. F., & Gilmanshin, R. I. (1991). Biopolymers, 31, 119–128.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biotechnology, University College of ScienceUniversity of TehranTehranIran
  2. 2.Department of Biochemistry, Faculty of Biological ScienceTarbiat Modares UniversityTehranIran

Personalised recommendations