A Solvent-Stable Metalloprotease Produced by Pseudomonas aeruginosa A2 Grown on Shrimp Shell Waste and Its Application in Chitin Extraction
- 251 Downloads
- 27 Citations
Abstract
A solvent-stable protease-producing bacterium was isolated and identified as Pseudomonas aeruginosa A2. The strain was found to produce high level of protease activity when grown in media containing only fresh shrimp waste (FSW) or shrimp waste powder (SWP), indicating that it can obtain its carbon, nitrogen, and salts requirements directly from shrimp waste. Maximum protease activities 17,000 and 12,000 U/mL were obtained with 80 g/L SWP and 135 g/L FSW, respectively. The optimum temperature and pH for protease activity were 60 °C and 8.0, respectively. The crude protease, at different enzyme/substrate (E/S) ratio, was tested for the deproteinization of shrimp waste to produce chitin. The crude enzyme of P. aeruginosa A2 was found to be effective in the deproteinization of shrimp waste. The protein removals after 3 h hydrolysis at 40 °C with an E/S ratio of 0.5 and 5 U/mg protein were about 56% and 85%, respectively. 13C CP/MAS-NMR spectral analysis of the chitin prepared by treatment with the crude protease was carried out and was found to be similar to that of the commercial α-chitin. These results suggest that enzymatic deproteinization of shrimp waste by A2 protease could be applicable to the chitin production process.
Keywords
Shrimp shell Waste valorization Pseudomonas aeruginosa Protease Enzymatic deproteinization ChitinNotes
Acknowledgments
This work was funded by Ministry of Higher Education and Scientific Research, Tunisia.
References
- 1.Deshpande, M. V. (1986). Journal of Scientific and Industrial Research, 45, 273–281.Google Scholar
- 2.Roberts, G. A. F. (1992). Chitin chemistry. London: Macmillan Press, Ltd.Google Scholar
- 3.Hirano, S. (1996). Biotechnology Annual Review, 2, 237–258.CrossRefGoogle Scholar
- 4.Kim, I. Y., Seo, S. J., Moon, H. S., Yoo, M. K., Park, I. Y., Kim, B. C., et al. (2008). Biotechnology Advances, 26, 1–21.CrossRefGoogle Scholar
- 5.Li, L., & Hsieh, Y. L. (2006). Carbohydrate Research, 341, 374–381.CrossRefGoogle Scholar
- 6.Chaussard, G., & Domard, A. (2004). Biomacromolecules, 5, 559–564.CrossRefGoogle Scholar
- 7.Jo, G. H., Jung, W. J., Kuk, J. H., Oh, K. T., Kim, Y. J., & Park, R. D. (2008). Carbohydrate Polymers, 74, 504–508.CrossRefGoogle Scholar
- 8.Oh, K. T., Kim, Y. J., Nguyen, V. N., Jung, W. J., & Park, R. D. (2007). Process Biochemistry, 42, 1069–1074.CrossRefGoogle Scholar
- 9.Sini, T. K., Santhosh, S., & Mathew, P. T. (2007). Carbohydrate Research, 342, 2423–2429.CrossRefGoogle Scholar
- 10.Bustos, R. O. & Healy, M. G. (1994). In Second International Symposium on Environmental Biotechnology, pp. 15–25Google Scholar
- 11.Sanger, F., Nicklen, S., & Coulson, A. R. (1977). Proceedings of the National Academy of Sciences of the United States of America, 74, 5463–5467.CrossRefGoogle Scholar
- 12.Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Nucleic Acids Research, 25, 3389–3402.CrossRefGoogle Scholar
- 13.Miller, J. H. (1972). In experiments in molecular genetics (pp. 431–435). Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
- 14.Sambrook, J., & Russel, D. (2001). In molecular cloning: a laboratory manual (3rd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.Google Scholar
- 15.Garcia-Carreno, F. L., Dimes, L. E., & Haard, N. F. (1993). Analytical Biochemistry, 214, 65–69.CrossRefGoogle Scholar
- 16.Kembhavi, A. A., Kulkarni, A., & Pant, A. (1993). Applied Biochemistry and Biotechnology, 38, 83–92.CrossRefGoogle Scholar
- 17.Rao, M. S., Muñoz, J., & Stevens, W. F. (2000). Applied Microbiology and Biotechnology, 54, 808–813.CrossRefGoogle Scholar
- 18.A.O.A.C. (1980). Official methods of analysis of the Association of Official Analytical Chemists. Washington (DC): AOAC.Google Scholar
- 19.Adler-Nissen, J. (1986). In enzymic hydrolysis of food proteins (pp. 135–138). London: Elsevier Applied Science.Google Scholar
- 20.Williams, Wilkins (1993). In section 4: Gram-negative aerobic rods and cocci. In: D. Jones & M. D.Collins (Ed.), Bergey’s Manual of Systematic Bacteriology, vol 1. Baltimore (pp 140–402)Google Scholar
- 21.Ogino, H., Yamada, M., Watanabe, F., Ichinose, H., Yasuda, M., & Ishikawa, H. (1999). Journal of Bioscience and Bioengineering, 88, 513–518.CrossRefGoogle Scholar
- 22.Joo, H. S., & Chang, C. S. (2005). Process Biochemistry, 40, 1263–1270.CrossRefGoogle Scholar
- 23.Oh, Y. S., Shih, I. L., Tzeng, Y. M., & Wang, S. L. (2000). Enzyme and Microbial Technology, 27, 3–10.CrossRefGoogle Scholar
- 24.Kumar, A. G., Swarnalatha, S., Sairam, B., & Sekaran, G. (2008). Bioresource Technology, 99, 1939–1944.CrossRefGoogle Scholar
- 25.Gupta, A., Roy, I., Khare, S. K., & Gupta, M. N. (2005). Journal of Chromatography A, 1069, 155–161.CrossRefGoogle Scholar
- 26.Jellouli, K., Bayoudh, A., Manni, L., Agrebi, R., & Nasri, M. (2008). Applied Microbiology and Biotechnology, 79, 989–999.CrossRefGoogle Scholar
- 27.Ogino, H., Watanabe, F., Yamada, M., Nakagawa, S., Hirose, T., Noguchi, A., et al. (1999). Journal of Bioscience and Bioengineering, 87, 61–68.CrossRefGoogle Scholar
- 28.Wang, S. L., Kao, T. Y., Wang, C. L., Yen, Y. H., Chern, M. K., & Chen, Y. H. (2006). Enzyme and Microbial Technology, 39, 724–731.CrossRefGoogle Scholar
- 29.Manni, L., Jellouli, K., Ghorbel-Bellaaj, O., Agrebi, R., Haddar, A., Sellami-Kamoun, A., et al. (2010). Applied Biochemistry and Biotechnology, 160, 2308–2321.CrossRefGoogle Scholar
- 30.Chui, V. W. D., Mok, K. W., Ng, C. Y., Luong, B. P., & Ma, K. K. (1996). Environment International, 22, 463–468.CrossRefGoogle Scholar
- 31.Tolaimate, A., Desbrieres, J., Rhazi, M., & Alagui, A. (2003). Polymer, 44, 7939–7952.CrossRefGoogle Scholar
- 32.Legarreta, G. I., Zakaria, Z. & Hall, G. M. (1996). In advances in Chitin Science. In: J. Andre (Ed.), vol. 1 (pp 399–402). Lyon, FranceGoogle Scholar
- 33.Cárdenas, G., Cabrera, G., Taboada, E., & Miranda, S. P. (2004). Journal of Applied Polymer Science, 93, 1876–1885.CrossRefGoogle Scholar
- 34.Focher, B., Beltrame, P. L., Naggi, A., & Torri, G. (1990). Carbohydrate Polymers, 12, 405–418.CrossRefGoogle Scholar
- 35.Cortizo, M. S., Berghoff, C. F., & Alessandrini, J. L. (2008). Carbohydrate Polymers, 74, 10–15.CrossRefGoogle Scholar