Applied Biochemistry and Biotechnology

, Volume 164, Issue 4, pp 410–425 | Cite as

A Solvent-Stable Metalloprotease Produced by Pseudomonas aeruginosa A2 Grown on Shrimp Shell Waste and Its Application in Chitin Extraction

  • Olfa Ghorbel-Bellaaj
  • Kemel Jellouli
  • Islem Younes
  • Laila Manni
  • Mohamed Ouled Salem
  • Moncef NasriEmail author


A solvent-stable protease-producing bacterium was isolated and identified as Pseudomonas aeruginosa A2. The strain was found to produce high level of protease activity when grown in media containing only fresh shrimp waste (FSW) or shrimp waste powder (SWP), indicating that it can obtain its carbon, nitrogen, and salts requirements directly from shrimp waste. Maximum protease activities 17,000 and 12,000 U/mL were obtained with 80 g/L SWP and 135 g/L FSW, respectively. The optimum temperature and pH for protease activity were 60 °C and 8.0, respectively. The crude protease, at different enzyme/substrate (E/S) ratio, was tested for the deproteinization of shrimp waste to produce chitin. The crude enzyme of P. aeruginosa A2 was found to be effective in the deproteinization of shrimp waste. The protein removals after 3 h hydrolysis at 40 °C with an E/S ratio of 0.5 and 5 U/mg protein were about 56% and 85%, respectively. 13C CP/MAS-NMR spectral analysis of the chitin prepared by treatment with the crude protease was carried out and was found to be similar to that of the commercial α-chitin. These results suggest that enzymatic deproteinization of shrimp waste by A2 protease could be applicable to the chitin production process.


Shrimp shell Waste valorization Pseudomonas aeruginosa Protease Enzymatic deproteinization Chitin 



This work was funded by Ministry of Higher Education and Scientific Research, Tunisia.


  1. 1.
    Deshpande, M. V. (1986). Journal of Scientific and Industrial Research, 45, 273–281.Google Scholar
  2. 2.
    Roberts, G. A. F. (1992). Chitin chemistry. London: Macmillan Press, Ltd.Google Scholar
  3. 3.
    Hirano, S. (1996). Biotechnology Annual Review, 2, 237–258.CrossRefGoogle Scholar
  4. 4.
    Kim, I. Y., Seo, S. J., Moon, H. S., Yoo, M. K., Park, I. Y., Kim, B. C., et al. (2008). Biotechnology Advances, 26, 1–21.CrossRefGoogle Scholar
  5. 5.
    Li, L., & Hsieh, Y. L. (2006). Carbohydrate Research, 341, 374–381.CrossRefGoogle Scholar
  6. 6.
    Chaussard, G., & Domard, A. (2004). Biomacromolecules, 5, 559–564.CrossRefGoogle Scholar
  7. 7.
    Jo, G. H., Jung, W. J., Kuk, J. H., Oh, K. T., Kim, Y. J., & Park, R. D. (2008). Carbohydrate Polymers, 74, 504–508.CrossRefGoogle Scholar
  8. 8.
    Oh, K. T., Kim, Y. J., Nguyen, V. N., Jung, W. J., & Park, R. D. (2007). Process Biochemistry, 42, 1069–1074.CrossRefGoogle Scholar
  9. 9.
    Sini, T. K., Santhosh, S., & Mathew, P. T. (2007). Carbohydrate Research, 342, 2423–2429.CrossRefGoogle Scholar
  10. 10.
    Bustos, R. O. & Healy, M. G. (1994). In Second International Symposium on Environmental Biotechnology, pp. 15–25Google Scholar
  11. 11.
    Sanger, F., Nicklen, S., & Coulson, A. R. (1977). Proceedings of the National Academy of Sciences of the United States of America, 74, 5463–5467.CrossRefGoogle Scholar
  12. 12.
    Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Nucleic Acids Research, 25, 3389–3402.CrossRefGoogle Scholar
  13. 13.
    Miller, J. H. (1972). In experiments in molecular genetics (pp. 431–435). Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
  14. 14.
    Sambrook, J., & Russel, D. (2001). In molecular cloning: a laboratory manual (3rd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.Google Scholar
  15. 15.
    Garcia-Carreno, F. L., Dimes, L. E., & Haard, N. F. (1993). Analytical Biochemistry, 214, 65–69.CrossRefGoogle Scholar
  16. 16.
    Kembhavi, A. A., Kulkarni, A., & Pant, A. (1993). Applied Biochemistry and Biotechnology, 38, 83–92.CrossRefGoogle Scholar
  17. 17.
    Rao, M. S., Muñoz, J., & Stevens, W. F. (2000). Applied Microbiology and Biotechnology, 54, 808–813.CrossRefGoogle Scholar
  18. 18.
    A.O.A.C. (1980). Official methods of analysis of the Association of Official Analytical Chemists. Washington (DC): AOAC.Google Scholar
  19. 19.
    Adler-Nissen, J. (1986). In enzymic hydrolysis of food proteins (pp. 135–138). London: Elsevier Applied Science.Google Scholar
  20. 20.
    Williams, Wilkins (1993). In section 4: Gram-negative aerobic rods and cocci. In: D. Jones & M. D.Collins (Ed.), Bergey’s Manual of Systematic Bacteriology, vol 1. Baltimore (pp 140–402)Google Scholar
  21. 21.
    Ogino, H., Yamada, M., Watanabe, F., Ichinose, H., Yasuda, M., & Ishikawa, H. (1999). Journal of Bioscience and Bioengineering, 88, 513–518.CrossRefGoogle Scholar
  22. 22.
    Joo, H. S., & Chang, C. S. (2005). Process Biochemistry, 40, 1263–1270.CrossRefGoogle Scholar
  23. 23.
    Oh, Y. S., Shih, I. L., Tzeng, Y. M., & Wang, S. L. (2000). Enzyme and Microbial Technology, 27, 3–10.CrossRefGoogle Scholar
  24. 24.
    Kumar, A. G., Swarnalatha, S., Sairam, B., & Sekaran, G. (2008). Bioresource Technology, 99, 1939–1944.CrossRefGoogle Scholar
  25. 25.
    Gupta, A., Roy, I., Khare, S. K., & Gupta, M. N. (2005). Journal of Chromatography A, 1069, 155–161.CrossRefGoogle Scholar
  26. 26.
    Jellouli, K., Bayoudh, A., Manni, L., Agrebi, R., & Nasri, M. (2008). Applied Microbiology and Biotechnology, 79, 989–999.CrossRefGoogle Scholar
  27. 27.
    Ogino, H., Watanabe, F., Yamada, M., Nakagawa, S., Hirose, T., Noguchi, A., et al. (1999). Journal of Bioscience and Bioengineering, 87, 61–68.CrossRefGoogle Scholar
  28. 28.
    Wang, S. L., Kao, T. Y., Wang, C. L., Yen, Y. H., Chern, M. K., & Chen, Y. H. (2006). Enzyme and Microbial Technology, 39, 724–731.CrossRefGoogle Scholar
  29. 29.
    Manni, L., Jellouli, K., Ghorbel-Bellaaj, O., Agrebi, R., Haddar, A., Sellami-Kamoun, A., et al. (2010). Applied Biochemistry and Biotechnology, 160, 2308–2321.CrossRefGoogle Scholar
  30. 30.
    Chui, V. W. D., Mok, K. W., Ng, C. Y., Luong, B. P., & Ma, K. K. (1996). Environment International, 22, 463–468.CrossRefGoogle Scholar
  31. 31.
    Tolaimate, A., Desbrieres, J., Rhazi, M., & Alagui, A. (2003). Polymer, 44, 7939–7952.CrossRefGoogle Scholar
  32. 32.
    Legarreta, G. I., Zakaria, Z. & Hall, G. M. (1996). In advances in Chitin Science. In: J. Andre (Ed.), vol. 1 (pp 399–402). Lyon, FranceGoogle Scholar
  33. 33.
    Cárdenas, G., Cabrera, G., Taboada, E., & Miranda, S. P. (2004). Journal of Applied Polymer Science, 93, 1876–1885.CrossRefGoogle Scholar
  34. 34.
    Focher, B., Beltrame, P. L., Naggi, A., & Torri, G. (1990). Carbohydrate Polymers, 12, 405–418.CrossRefGoogle Scholar
  35. 35.
    Cortizo, M. S., Berghoff, C. F., & Alessandrini, J. L. (2008). Carbohydrate Polymers, 74, 10–15.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Olfa Ghorbel-Bellaaj
    • 1
  • Kemel Jellouli
    • 1
  • Islem Younes
    • 1
  • Laila Manni
    • 1
  • Mohamed Ouled Salem
    • 1
  • Moncef Nasri
    • 1
    Email author
  1. 1.Laboratoire de Génie Enzymatique et de MicrobiologieEcole Nationale d’Ingénieurs de SfaxSfaxTunisia

Personalised recommendations