Applied Biochemistry and Biotechnology

, Volume 164, Issue 2, pp 148–161

Specific Poly-phenolic Compounds in Cell Culture of Vitis vinifera L. cv. Gamay Fréaux

  • Inga Mewis
  • Iryna M. Smetanska
  • Carsten T. Müller
  • Christian Ulrichs
Article

Abstract

Cell cultures established from plants represent an attractive alternative to whole plants for effective production of bioactive secondary metabolites. Cell culture from Vitis vinifera L. cv. Gamay Fréaux accumulated high amounts of hydroxycinnamic acid derivatives and anthocyanins. Two new compounds were identified: 3-O-glucosylresveratrol, a stilbene derivative, abundant in cell suspension culture, and a hydroxyphenol, 4-(3,5-dihydroxyphenyl)-phenol, abundant in callus culture. The major anthocyanin monoglucosides present in cell suspension culture were cyanidin 3-O-glucoside and peonidin 3-O-glucoside, and the major cinnamoyl derivatives were cyanidin 3-O-p-coumaryl glucoside and peonidin 3-O-p-coumaryl glucoside. Three minor anthocyanin compounds were found in V. vinifera cell culture: delphinidin 3-O-glucoside, petunidin 3-O-glucoside, and delphinidin 3-O-p-coumaryl glucoside. Anthocyanin levels of cell suspension cultures increased significantly—about eight fold—after 4-day cultivation in new medium. Salicylic acid at a concentration of 50 μM did not enhance anthocyanin accumulation in cell suspension culture, and similar levels of jasmonic acid significantly reduced the anthocyanin content.

Keywords

Resveratrol derivative Anthocyanin Cell culture Vitis vinifera Elicitation Wine 

References

  1. 1.
    Pezzuto, J. M. (1997). Biochemical Pharmacology, 53, 121–133.CrossRefGoogle Scholar
  2. 2.
    Balandrin, M. F., Klocke, J. A., Wurtele, E. S., & Bollinger, W. H. (1985). Science, 228, 1154–1160.CrossRefGoogle Scholar
  3. 3.
    Shahidi, F. (2004). Journal of Food Science, 69, 146–149.CrossRefGoogle Scholar
  4. 4.
    Rates, S. M. K. (2001). Toxicon, 39, 603–613.CrossRefGoogle Scholar
  5. 5.
    Su, W. W. (2006). In G. S. Dutta & Y. Inarky (Eds.), Plant tissue culture engineering. Part II (pp. 135–159). Netherlands: Springer.CrossRefGoogle Scholar
  6. 6.
    Mulabagal, V., & Tsay, H.-S. (2004). International Journal of Applied Science and Engineering, 2, 29–48.Google Scholar
  7. 7.
    Lee, C. W. T., & Shuler, M. L. (2000). Biotechnology and Bioengineering, 67, 61–71.CrossRefGoogle Scholar
  8. 8.
    Yukimune, Y., Tabata, H., Higashi, Y., & Hara, Y. (1996). Nature Biotechnology, 14, 1129–1132.CrossRefGoogle Scholar
  9. 9.
    Yamamoto, Y., Mizuguchi, R., & Yamada, Y. (1982). Theoretical and Applied Genetics, 61, 113–116.CrossRefGoogle Scholar
  10. 10.
    Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Experimental Cell Research, 50, 151–158.CrossRefGoogle Scholar
  11. 11.
    Robins, R. J., Parr, A. J., Richards, S. R., & Rhodes, M. J. C. (1986). In P. Morris, A. H. Scragg, A. Stafford, & M. W. Fowler (Eds.), Secondary metabolism in plant cell cultures (pp. 162–172). Cambridge: Cambridge University Press.Google Scholar
  12. 12.
    Vijaya, S. N., Udayasri, P. V. V., Aswani Kumar, Y., Ravi, B. B., Phani kumar, Y., & Vijay, V. M. (2010). Journal of Natural Products, 3, 112–123.Google Scholar
  13. 13.
    Burns, J., Gardner, P. T., Matthews, D., Duthie, G. G., Lean, M. E. J., & Crozier, A. (2001). Journal of Agricultural and Food Chemistry, 49, 5797–5808.CrossRefGoogle Scholar
  14. 14.
    Mazza, G., Fukumoto, L., Delaquis, P., Girard, B., & Ewert, B. (1999). Journal of Agricultural and Food Chemistry, 47, 4009–4017.CrossRefGoogle Scholar
  15. 15.
    Garca-Beneytez, E., Cabello, F., & Revilla, E. (2003). Journal of Agricultural and Food Chemistry, 51, 5622–5629.CrossRefGoogle Scholar
  16. 16.
    Waffo-Teguo, P., Lee, D., Cuendet, M., Mérillon, J.-M., Pezzuto, J. M., & Kinghorn, A. D. (2001). Journal of Natural Products, 64, 136–138.CrossRefGoogle Scholar
  17. 17.
    Pan, M. H., Lin, C.-L., Tsai, J.-H., Ho, C.-T., & Chen, W.-J. (2010). Journal of Agricultural and Food Chemistry, 58, 226–234.CrossRefGoogle Scholar
  18. 18.
    Cormier, F., Do, C. B., & Nicolas, Y. (1994). In Vitro Cellular & Developmental Biology, 30, 171–173.CrossRefGoogle Scholar
  19. 19.
    Baderschneider, B., & Winterhalter, P. (2000). Journal of Agricultural and Food Chemistry, 48, 2681–2686.CrossRefGoogle Scholar
  20. 20.
    Baur, J. A., & Sinclair, D. A. (2006). Nature Reviews. Drug Discovery, 5, 493–506.CrossRefGoogle Scholar
  21. 21.
    Lamikanra, O., Grimm, C. C., Rodin, J. B., & Inyang, D. (1996). Journal of Agricultural and Food Chemistry, 44, 111–1115.CrossRefGoogle Scholar
  22. 22.
    Shen, T., Wang, X.-N., & Lou, H. X. (2009). Natural Product Reports, 26, 916–935.CrossRefGoogle Scholar
  23. 23.
    Berente, B., De la Calle García, D., Reichenbächer, M., & Danzer, K. (2000). Journal of Chromatography A, 871, 95–103.CrossRefGoogle Scholar
  24. 24.
    Singleton, V. L., & Trousdale, E. K. (1992). American Journal of Enology Viticulture, 43(1), 63–70.Google Scholar
  25. 25.
    Belhadj, A., Telef, N., Saigne, C., Cluzet, S., Barrieu, F., Hamdi, S., et al. (2008). Plant Physiology and Biochemistry, 46, 493–499.CrossRefGoogle Scholar
  26. 26.
    Kessler, A., & Baldwin, I. T. (2002). Annual Review of Plant Biology, 53, 299–328.CrossRefGoogle Scholar
  27. 27.
    Glazebrook, J., Chen, W., Esters, B., Chang, H.-S., Nawrath, C., Métraux, J.-P., et al. (2003). The Plant Journal, 34, 217–228.CrossRefGoogle Scholar
  28. 28.
    Wang, Y.-D., Yuan, Y.-J., & Wu, J.-C. (2004). Biochemical Engineering Journal, 19, 259–265.CrossRefGoogle Scholar
  29. 29.
    Onofrio, C. D., Cox, A., Davies, C., & Boss, P. K. (2008). Functional Plant Biology, 36, 323–338.CrossRefGoogle Scholar
  30. 30.
    Romagnoli, L. G., & Knorr, D. (1988). Food Biotechnology, 2, 93–104.CrossRefGoogle Scholar
  31. 31.
    Bishayee, A. (2009). Cancer Prevention Research, 2, 409–418.CrossRefGoogle Scholar
  32. 32.
    Al-Sane, K. O., Shibli, R. A., Freihat, N. M., & Hammouri, M. K. (2005). JJAS, 1, 84–92.Google Scholar
  33. 33.
    Wang, W., Tang, K., Yang, H.-R., Wen, P. F., Zhang, P., Wang, H.-L., et al. (2010). Plant Physiology and Biochemistry, 48, 142–152.CrossRefGoogle Scholar
  34. 34.
    Jiménez, J. B., Orea, J. M., Urena, A. G., Escribano, P., López de la Osa, P., & Guadarrama. (2007). European Food Research and Technology, 224, 373–378.CrossRefGoogle Scholar
  35. 35.
    Chung, L. M., Park, M. R., Chun, J. C., & Yun, S. J. (2003). Plant Science, 164, 103–109.CrossRefGoogle Scholar
  36. 36.
    Melchio, F., & Kindl, H. (1991). Archives of Biochemistry and Biophysics, 288, 552–557.CrossRefGoogle Scholar
  37. 37.
    Zamboni, A., Vrhovsek, U., Kassemeyer, H.-H., Mattivi, F., & Velasco, R. (2006). Vitis, 45, 63–68.Google Scholar
  38. 38.
    Sakuta, M., Hirano, H., Kakegawa, K., Suda, J., Hirose, M., Joy, R. W., IV, et al. (1994). Plant Cell Tissue and Organ Culture, 38, 167–169.CrossRefGoogle Scholar
  39. 39.
    Luczkiewcz, M., & Cisowski, W. (2001). Plant Cell Tissue and Organ Culture, 65, 57–68.CrossRefGoogle Scholar
  40. 40.
    Fukui, H., Yoshikawa, N., & Tabata, M. (1983). Phytochemistry, 22, 2451–2453.CrossRefGoogle Scholar
  41. 41.
    Hosokawa, K., Fukunaga, Y., Fukushi, E., & Kawabata, Y. (1996). Phytochemistry, 41, 1531–1533.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Inga Mewis
    • 1
  • Iryna M. Smetanska
    • 2
  • Carsten T. Müller
    • 3
  • Christian Ulrichs
    • 4
  1. 1.Department of QualityLeibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.GroßbeerenGermany
  2. 2.Department of Food BiotechnologyBerlin University of TechnologyBerlinGermany
  3. 3.School of BiosciencesCardiff UniversityCardiffUK
  4. 4.Faculty for Agriculture and Horticulture, Division Urban Plant EcophysiologyHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations