Applied Biochemistry and Biotechnology

, Volume 163, Issue 8, pp 1020–1037 | Cite as

Investigation of Yeast Invertase Immobilization onto Cupric Ion-Chelated, Porous, and Biocompatible Poly(Hydroxyethyl Methacrylate-n-Vinyl Imidazole) Microspheres

Article

Abstract

Cupric ion-chelated poly(hydroxyethyl methacrylate-n-vinyl imidazole) (poly(HEMA-VIM)) microspheres prepared by suspension polymerization were investigated as a specific adsorbent for immobilization of yeast invertase in a batch system. They were characterized by scanning electron microscopy, surface area, and pore size measurements. They have spherical shape and porous structure. The specific surface area of the p(HEMA-VIM) spheres was found to be 81.2 m2/g with a size range of 70–120 μm in diameter, and the swelling ratio was 86.9%. Then, Cu(II) ion chelated on the microspheres (546 μmol Cu(II)/g), and they were used in the invertase adsorption. Maximum invertase adsorption was 51.2 mg/g at pH 4.5. Cu(II) chelation increases the tendency from Freundlich-type to Langmuir-type adsorption model. The optimum activity for both free and adsorbed invertase was observed at pH 4.5. The optimum temperature for the poly(HEMA-VIM)/Cu(II)-invertase system was found to be at 55 °C, 10 °C higher than that of the free enzyme at 45 °C. Vmax values were determined as 342 and 304 U/mg enzyme, for free and adsorbed invertase, respectively. Km values were found to be same for free and adsorbed invertase (20 mM). Thermal and pH stability and reusability of invertase increased with immobilization.

Keywords

Enzyme immobilization Invertase Poly(HEMA-VIM) microsphere Metal chelating Cu(II) chelation n-Vinyl imidazole 

References

  1. 1.
    Shankar, V., & Kotwal, S. M. (2009). Biotechnology Advances, 4, 311–322.Google Scholar
  2. 2.
    Arruda, L. M. O., & Vitole, M. (1999). Applied biochemistry and biotechnology, 81, 23–33.CrossRefGoogle Scholar
  3. 3.
    Monsan, P., & Combes, D. (1984). Biotechnology and Bioengineering, 26, 347–351.CrossRefGoogle Scholar
  4. 4.
    Cheetham, P. S. J. (1995). In A. Wiseman (Ed.), Handbook of enzyme biotechnology (pp. 465–466). Cornwall: TJ.Google Scholar
  5. 5.
    Kenedy, J. F., & Paterson, M. (1993). Polymer International, 32, 177–182.CrossRefGoogle Scholar
  6. 6.
    Tanaka, A., Tosa, T., & Kobayashi, T. (1993). Industrial application of immobilised biocatalysts. In W. C. McGregor (Ed.), Bioprocess technology, 16. New York: Marcel Dekker.Google Scholar
  7. 7.
    Baustista, F. M., Bravo, M. C., Campelo, J. M., Garcia, A., Luna, D., Marinas, J. M., et al. (1999). Journal of molecular catalysis. B, Enzymatic, 6, 473–481.CrossRefGoogle Scholar
  8. 8.
    Loska, J., Wlodarczyk, J., & Zaborska, W. (1999). Journal of molecular catalysis. B, Enzymatic, 6, 549–553.CrossRefGoogle Scholar
  9. 9.
    Cosnier, S., Mousty, C., Gondran, C., & Lepellec, A. (2006). Mat Sci Eng C, 26, 442–447.CrossRefGoogle Scholar
  10. 10.
    Doretti, L., Ferrara, D., Gattolin, P., & Lora, S. (1996). Biosensors & Bioelectronics, 11, 365–373.CrossRefGoogle Scholar
  11. 11.
    Sarı, M., Akgöl, S., Karataş, M., & Denizli, A. (2006). Industrial and Engineering Chemistry Research, 45, 3036–3043.CrossRefGoogle Scholar
  12. 12.
    Oh, J. T., & Kim, J. H. (2000). Enzyme Microbiol. Technology, 27, 356–361.Google Scholar
  13. 13.
    Oliveira, P. C., Alves, G. M., & De Castro, H. F. (2000). Biochemical Engineering Journal, 5, 63–71.CrossRefGoogle Scholar
  14. 14.
    Akgöl, S., Türkmen, D., & Denizli, A. (2004). Journal of Applied Polymer Science, 93, 2669–2677.CrossRefGoogle Scholar
  15. 15.
    Osman, B., Kara, A., Uzun, L., Beşirli, N., & Denizli, A. (2005). Journal of molecular catalysis B, 37, 88–94.CrossRefGoogle Scholar
  16. 16.
    Akkaya, B., Uzun, L., Altıntaş, E. B., Candan, F., & Denizli, A. (2009). J. Macromol. Biosci. A: P.A.C, 46, 232–239.CrossRefGoogle Scholar
  17. 17.
    Soppimath, K. S., Kulkarni, A. R., & Aminabhavi, T. M. (2001). Journal of Microencapsulation, 18, 397–409.CrossRefGoogle Scholar
  18. 18.
    Soppimath, K. S., & Aminabhavi, T. M. (2002). Journal of Microencapsulation, 19, 281–292.CrossRefGoogle Scholar
  19. 19.
    Soppimath, K. S., Kulkarni, A. R., Aminabhavi, T. M., & Bhaskar, C. (2001). Journal of Microencapsulation, 18, 811–817.CrossRefGoogle Scholar
  20. 20.
    Kulkarni, A. R., Soppimath, K. S., Aminabhavi, T. M., & Rudzinski, W. E. (2001). European Journal of Pharmaceutics and Biopharmaceutics, 51, 127–133.CrossRefGoogle Scholar
  21. 21.
    Denizli, A., Tuncel, A., Olcay, M., Sarnatskaya, V., Nicolaev, L., Sergeev, V., et al. (1992). Clinical Materials, 11, 129–138.CrossRefGoogle Scholar
  22. 22.
    Denizli, A., & Pişkin, E. (1995). Journal of Chromatography B, 666, 215–222.CrossRefGoogle Scholar
  23. 23.
    Denizli, A., & Pişkin, E. J. (2001). Biochemistry Biophysical Methods, 49, 391–416.CrossRefGoogle Scholar
  24. 24.
    Gupta, M. N., Jain, S., & Roy, I. (2002). Biotechnology Progress, 18, 78–81.CrossRefGoogle Scholar
  25. 25.
    Tishchenko, G., Dybal, J., Meszaroova, J. K., Sedlakova, Z., & Bleha, M. (2002). Journal of Chromatography A, 954, 115–126.CrossRefGoogle Scholar
  26. 26.
    Gaberc-Porekar, V., & Menart, V. (2001). Journal of Biochemical and Biophysical Methods, 49, 335–360.CrossRefGoogle Scholar
  27. 27.
    Akgöl, S., & Denizli, A. (2004). Journal of Molecular Catalysis. B, Enzymatic, 28, 7–14.CrossRefGoogle Scholar
  28. 28.
    Chaga, G. S. (2001). Journal of Biochemical and Biophysical Methods, 49, 313–334.CrossRefGoogle Scholar
  29. 29.
    Denizli, A., Denizli, F., & Piskin, E. (1999). Journal of Biomaterials Science, Polymer Edition, 10, 305–318.CrossRefGoogle Scholar
  30. 30.
    Wu, C. Y., Suen, S. Y., Chen, S. C., & Tzeng, J. H. (2003). Journal of Chromatography A, 996, 53–70.CrossRefGoogle Scholar
  31. 31.
    Alberto, F., Bignon, C., Sulzenbacher, G., Henrissat, B., & Czjek, M. (2004). The Journal of Biological Chemistry, 279, 18903–18910.CrossRefGoogle Scholar
  32. 32.
    Chen, W. Y., Wu, C. F., & Liu, C. C. (1996). Journal of Colloid and Interface Science, 180, 135–143.CrossRefGoogle Scholar
  33. 33.
    Hemdan, E. S., & Porath, J. (1985). Journal of Chromatography, 323, 265–272.CrossRefGoogle Scholar
  34. 34.
    Sulkowski, E. (1985). Trends in Biotechnology, 3, 1–12.CrossRefGoogle Scholar
  35. 35.
    Denizli, A., Köktürk, G., Yavuz, H., & Pişkin, E. (1999). Reactive and Functional Polymers, 40, 195–203.CrossRefGoogle Scholar
  36. 36.
    Bahar, T., & Tuncel, A. (2002). Journal of Applied Polymer Science, 83, 1268–1279.CrossRefGoogle Scholar
  37. 37.
    Chaplin, M. F., & Bucke, C. (1992). Enzyme technology. Cambridge: Cambridge University Press. 18.Google Scholar
  38. 38.
    Shuler, M., & Kargi, F. (1992). Bioprocess engineering. Englewood Cliffs: Prentice Hall. 78.Google Scholar
  39. 39.
    Xu, F. J., Cai, Q. J., Li, Y. L., Kang, E. T., & Neoh, K. G. (2005). Biomacromolecules, 6, 1012–1020.CrossRefGoogle Scholar
  40. 40.
    Cantarella, M., Alfani, F., Cantarella, L., & Gallifuoco, A. (1997). Immobilization of enzyme and cells. In G. F. Bickerstaff (Ed.), Biotechnology (Vol. 1, pp. 67–76). Tutowa: Humana.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Biochemistry Division, Department of ChemistryHacettepe UniversityAnkaraTurkey

Personalised recommendations