Applied Biochemistry and Biotechnology

, Volume 163, Issue 8, pp 954–964 | Cite as

Vectors for Glucose-Dependent Protein Expression in Saccharomyces cerevisiae

  • Simone Thierfelder
  • Kai Ostermann
  • Andy Göbel
  • Gerhard Rödel
Article

Abstract

Based on the p426 series of expression vectors developed by Mumberg et al. (Gene 156, 119–122, 1995), we have generated a set of plasmids that allow the glucose-dependent expression of target genes in the yeast, Saccharomyces cerevisiae. The ADH1 promoter in plasmid p426-ADH1 was replaced by the 1-kb 5′-region from either of the following genes: HXK1, YGR243, HXT4 and HXT7. Expression mediated by the respective 5′-regions was monitored with EGFP, yEGFP3-CLN2pest and TurboGFP as marker genes. Fluorescence is induced 2.7-fold using the HXK1, 2.3-fold using the YGR243-, 5-fold using the HXT7- and 12.6-fold using the HXT4 5′-regions upon depletion of glucose to a concentration of <0.5 g/l.

Keywords

Saccharomyces cerevisiae 5′-Regulatory region Glucose limitation Gene expression Vector construction 

Notes

Acknowledgements

We thank Anikó Böszörmenyi for assistance and Dr. Martin Eschenhagen for help in photo editing. The study was supported by a grant of the Sächsische Aufbaubank (project no. 12761/2121) to GR.

References

  1. 1.
    Kim, J.-H., & Johnston, M. (2006). The Journal of Biological Chemistry, 281, 26144–26149.CrossRefGoogle Scholar
  2. 2.
    Walsh, R. B., Kawasaki, G., & Fraenkel, D. G. (1983). Journal of Bacteriology, 154, 1002–1004.Google Scholar
  3. 3.
    Bianconi, M. L. (2003). The Journal of Biological Chemistry, 278, 18709–18713.CrossRefGoogle Scholar
  4. 4.
    Naitou, M., Hagiwara, H., Hanaoka, F., Eki, T., & Murakami, Y. (1997). Yeast, 13, 1275–1290.CrossRefGoogle Scholar
  5. 5.
    Lobo, Z., & Maitra, P. K. (1977). Archives of Biochemistry and Biophysics, 182, 639–645.CrossRefGoogle Scholar
  6. 6.
    Rodriguez, A., De la Cera, T., Herrero, P., & Moreno, F. (2001). The Biochemical Journal, 355, 625–631.Google Scholar
  7. 7.
    Reinders, J., Zahedi, R. P., Pfanner, N., Meisinger, C., & Sickmann, A. (2006). Journal of Proteome Research, 5, 1543–1554.CrossRefGoogle Scholar
  8. 8.
    Viladevall, L., Serrano, R., Ruiz, A., Domenech, G., Giraldo, J., & Barcelo, A. (2004). The Journal of Biological Chemistry, 279, 43614–43624.CrossRefGoogle Scholar
  9. 9.
    Proft, M., Gibbons, F. D., Copeland, M., Roth, F. P., & Struhl, K. (2005). Eukaryot. Cell, 4, 1343–1352.Google Scholar
  10. 10.
    Liu, X., Zhang, X., Wang, C., Liu, L., Lei, M., & Bao, X. (2007). Current Microbiology, 54, 325–330.CrossRefGoogle Scholar
  11. 11.
    Wu, J., Zhang, N., Hayes, A., Panoutsopoulou, K., & Oliver, S. G. (2004). Proceedings of the National Academy of Sciences of the United States of America, 101, 3148–3153.CrossRefGoogle Scholar
  12. 12.
    Boer, V. M., de Winde, J. H., Pronk, J. T., & Piper, M. D. (2003). The Journal of Biological Chemistry, 278, 3265–3274.CrossRefGoogle Scholar
  13. 13.
    Tai, S. L., Boer, V. M., Daran-Lapujade, P., Walsh, M. C., de Winde, J. H., Daran, J. M., et al. (2005). The Journal of Biological Chemistry, 280, 437–447.CrossRefGoogle Scholar
  14. 14.
    Greatrix, B. W., & van Vuuren, H. J. (2006). Current Genetics, 49, 205–217.CrossRefGoogle Scholar
  15. 15.
    Özcan, S., & Johnston, M. (1995). Molecular and Cellular Biology, 15, 1564–1572.Google Scholar
  16. 16.
    Theodoris, G., & Bisson, L. F. (2001). FEMS Microbiology Letters, 197, 73–77.CrossRefGoogle Scholar
  17. 17.
    Özcan, S., & Johnston, M. (1996). Molecular and Cellular Biology, 16, 5536–5545.Google Scholar
  18. 18.
    Reifenberger, E., Boles, E., & Ciriacy, M. (1997). European Journal of Biochemistry, 245, 324–333.CrossRefGoogle Scholar
  19. 19.
    Petit, T., Diderich, J. A., Kruckeberg, A. L., Gancedo, C., & Van Dam, K. (2000). Journal of Bacteriology, 182, 6815–6818.CrossRefGoogle Scholar
  20. 20.
    Diderich, J. A., Schepper, M., van Hoek, P., Luttik, M. A., van Dijken, J. P., Pronk, J. T., et al. (1999). The Journal of Biological Chemistry, 274, 15350–15359.CrossRefGoogle Scholar
  21. 21.
    Lai, M.-T., Liu, D. Y., & Hseu, T. H. (2007). Biotechnological Letters, 29, 1287–1292.CrossRefGoogle Scholar
  22. 22.
    Mumberg, D., Müller, R., & Funk, M. (1995). Gene, 156, 119–122.CrossRefGoogle Scholar
  23. 23.
    Zaret, K. S., & Sherman, F. (1982). Cell, 28, 563–573.CrossRefGoogle Scholar
  24. 24.
    Sikorski, R. S., & Hieter, P. (1989). Genetics, 122, 19–27.Google Scholar
  25. 25.
    Christianson, T. W., Sikorski, R. S., Dante, M., Shero, J. H., & Hieter, P. (1992). Gene, 110, 119–122.CrossRefGoogle Scholar
  26. 26.
    Verduyn, C., Postma, E., Scheffers, W. A., & Van Dijken, J. P. (1992). Yeast, 8, 501–517.CrossRefGoogle Scholar
  27. 27.
    Van Driessche, B., Tafforeau, L., Hentges, P., Carr, A. M., & Vandenhaute, J. (2005). Yeast, 22, 1061–1068.CrossRefGoogle Scholar
  28. 28.
    Okazaki, K., Okazaki, N., Kume, K., Jinno, S., Tanaka, K., & Okayama, H. (1990). Nucleic Acids Research, 18, 6485–6489.CrossRefGoogle Scholar
  29. 29.
    Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  30. 30.
    Laemmli, U. K. (1970). Nature, 227, 680–685.CrossRefGoogle Scholar
  31. 31.
    Mateus, C., & Avery, S. V. (2000). Yeast, 16, 1313–1323.CrossRefGoogle Scholar
  32. 32.
    Dietvorst, J., Karhumaa, K., Kielland-Brandt, M. C., & Brandt, A. (2010). Yeast, 27, 131–138.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Simone Thierfelder
    • 1
  • Kai Ostermann
    • 1
  • Andy Göbel
    • 1
  • Gerhard Rödel
    • 1
  1. 1.Institut für Genetik, Technische Universität DresdenDresdenGermany

Personalised recommendations