Applied Biochemistry and Biotechnology

, Volume 163, Issue 7, pp 928–936 | Cite as

Ethanol Production from Residual Wood Chips of Cellulose Industry: Acid Pretreatment Investigation, Hemicellulosic Hydrolysate Fermentation, and Remaining Solid Fraction Fermentation by SSF Process

  • Neumara Luci Conceição Silva
  • Gabriel Jaime Vargas Betancur
  • Mariana Peñuela Vasquez
  • Edelvio de Barros Gomes
  • Nei PereiraJr.


Current research indicates the ethanol fuel production from lignocellulosic materials, such as residual wood chips from the cellulose industry, as new emerging technology. This work aimed at evaluating the ethanol production from hemicellulose of eucalyptus chips by diluted acid pretreatment and the subsequent fermentation of the generated hydrolysate by a flocculating strain of Pichia stipitis. The remaining solid fraction generated after pretreatment was subjected to enzymatic hydrolysis, which was carried out simultaneously with glucose fermentation [saccharification and fermentation (SSF) process] using a strain of Saccharomyces cerevisiae. The acid pretreatment was evaluated using a central composite design for sulfuric acid concentration (1.0–4.0 v/v) and solid to liquid ratio (1:2–1:4, grams to milliliter) as independent variables. A maximum xylose concentration of 50 g/L was obtained in the hemicellulosic hydrolysate. The fermentation of hemicellulosic hydrolysate and the SSF process were performed in bioreactors and the final ethanol concentrations of 15.3 g/L and 28.7 g/L were obtained, respectively.


Residual wood chips Acid pretreatment Hemicellulose Cellulose Bioethanol 



The authors are deeply grateful to the Brazilian Council for Research (CNPq), the Rio de Janeiro State Foundation for Science & Technology (FAPERJ), and the Brazilian Oil Company (PETROBRAS) for grants and other financial supports.


  1. 1.
    Pereira, N., Jr., Couto, M. A. P. G., & Santa Anna, L. M. M. (2008). Series on biotechnology: biomass of lignocellulosic composition for fuel ethanol production and the context f biorefinery. Amiga Digital UFRJ, Rio de Janeiro, 2:45.Google Scholar
  2. 2.
    Vásquez, M. P., Silva, J. N. C., Souza, M. B., Jr., & Pereira, N., Jr. (2007). Enzymatic hydrolysis optimization to ethanol production by Simultaneous Saccharification and Fermentation. Applied Biochemistry and Biotechnology, 136, 141–154.CrossRefGoogle Scholar
  3. 3.
    Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83(1), 1–11.CrossRefGoogle Scholar
  4. 4.
    Fogel, R., Garcia, R. R., Oliveira, R. S., Palacio, D. N. M., Madeira, L. S., & Pereira, N., Jr. (2005). Otimization of acid hydrolysis of surgacane bagasse and investigations on its fermentability for the production of xylitol by Candida guilliermondii. Applied Biochemistry and Biotechnology, 121, 741–752.CrossRefGoogle Scholar
  5. 5.
    Alriksson, B., Sjöde, A., Nilvebrant, N., & Jönsson, L. J. (2006). Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Applied Biochemistry and Biotechnology, 129–132, 599–611.CrossRefGoogle Scholar
  6. 6.
    Pan, X., Xie, D., Gilkes, N., Gregg, D. J., & Saddler, N. J. (2005). Strategies to enhance the enzymetic hydrolysis of pretreated softwood with high residual lignin content. Applied Biochemistry and Biotechnology, 121–124, 1069–1079.CrossRefGoogle Scholar
  7. 7.
    Eriksson, T., Börjesson, J., & Tjerneld, F. (2002). Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme and Microbial Technology, 31, 353–364.CrossRefGoogle Scholar
  8. 8.
    Cao, Y., & Tan, H. (2004). Structural characterization of cellulose with enzymatic treatment. Journal of Molecular Structure, 705, 189–193.CrossRefGoogle Scholar
  9. 9.
    Lee, J. (1997). Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology, 56, 1–24.CrossRefGoogle Scholar
  10. 10.
    Betancur, G. J. V. (2005). Advances in biotechnology of hemicellulose to ethanol production by Pichia stipitis. Msc Thesis. School of chemistry. Federal University of Rio de Janeiro.Google Scholar
  11. 11.
    Santa Anna, L. M., Pereira, N., Jr., Betancur, G. J. V., Bevilaqua, J. V., Gomes, A. C., & Menezes, E. P. (2005). Ethanol production process from hemicellulose hydrolysate of sugarcane bagasse within hydraulic press equipment. patent pi 0505299–9.Google Scholar
  12. 12.
    Pereira, N., Jr. (1991). Investigation of D-xylose fermenting yeast. Ph.D. Thesis. Department of Chemistry. The University of Manchester, U.K.Google Scholar
  13. 13.
    Montgomery, D., & Calado, V. (2003). Experimental design using the Statistic. Editorial E-papers Serviços editoriais, Rio de Janeiro. Brasil.Google Scholar
  14. 14.
    Parekh, S. R., & Wyman, M. (1986). Adaptation of Candida shehatae and Pichia stipitis to wood hydrolysate for increased ethanol production. Applied Microbiology and Biotechnology, 25, 300–304.CrossRefGoogle Scholar
  15. 15.
    Nigam, J. N. (2001). Ethanol production from hardwood spent sulfite liquor using an adapted strain of Pichia stipitis. Journal of Industrial Microbiology & Biotechnology, 26, 145–150.CrossRefGoogle Scholar
  16. 16.
    Ballesteros, I., Negro, M. J., Oliva, J. M., Cabañas, A., Manzanares, P., & Ballesteros, M. (2006). Ethanol production from steam-explosion pretreated wheat straw. Applied Biochemistry and Biotechnology, 129–132, 496–508.CrossRefGoogle Scholar
  17. 17.
    Ruiz, E., Cara, C., Ballesteros, M., Manzanares, P., Ballesteros, I., & Castro, E. (2006). Ethanol production from pretreated olive tree wood and sunflower stalks by an SSF process. Applied Biochemistry and Biotechnology, 129–132, 631–643.CrossRefGoogle Scholar
  18. 18.
    Wingren, A., Galber, M., Roslander, C., Rudolf, A., & Zacchi, G. (2005). Effect of reduction in yeast and enzyme concentrations in a SSF based bioethanol process. Applied Biochemistry and Biotechnology, 121–124, 485–499.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Neumara Luci Conceição Silva
    • 1
  • Gabriel Jaime Vargas Betancur
    • 1
  • Mariana Peñuela Vasquez
    • 2
  • Edelvio de Barros Gomes
    • 1
  • Nei PereiraJr.
    • 1
  1. 1.Biochemical Engineering DepartmentFederal University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.Engineering Faculty–Chemical Engineering DepartmentUniversity of AntioquiaMedellínColombia

Personalised recommendations