Advertisement

Applied Biochemistry and Biotechnology

, Volume 163, Issue 5, pp 600–611 | Cite as

Rhamnolipid Production by Pseudomonas Aeruginosa GIM 32 Using Different Substrates Including Molasses Distillery Wastewater

  • An-hua Li
  • Mei-ying Xu
  • Wei Sun
  • Guo-ping SunEmail author
Article

Abstract

A rhamnolipid production strain newly isolated from oil-contaminated soil was identified as Pseudomonas aeruginosa GIM32 by its morphology and 16S rDNA sequence analysis. The effect of carbon source and carbon to nitrogen (C/N) ratio on rhamnolipids production was investigated. Palm oil was favorable as a carbon source for rhamnolipid production. The maximum biomass and rhamnolipid concentration were 8.24 g/L and 30.4 g/L, respectively, with an optimization medium containing 50 g/L palm oil and 5 g/L sodium nitrate. Molasses distillery wastewater as an unconventional substrate for rhamnolipid production was investigated. It was found that 2.6 g/L of rhamnolipids was produced; this amount was higher than that of past reports using wastewater as a substrate. In addition, 44% of the chemical oxygen demand of wastewater was removed at the same time under the optimization condition. Eleven kinds of different molecular weight rhamnolipid homologues were identified in the rhamnolipids obtained from molasses distillery wastewater by P. aeruginosa GIM32 by LC–MS analysis.

Keywords

Rhamnolipids Pseudomonas aeruginosa Molasses distillery wastewater Biosurfactant 

Notes

Acknowledgements

This research is supported by Teamwork Project of the Natural Science Foundation of Guangdong Province (9351007002000001), Guangdong Provincial Programs for Promoting the Integration of Production, Teaching and Research (2009B090300300299), and Guangdong-Hongkong Technology Cooperation Funding (2008A030700003).

References

  1. 1.
    Lang, S., & Wullbrandt, D. (1999). Applied Microbiology and Biotechnology, 51, 22–32.CrossRefGoogle Scholar
  2. 2.
    Desai, J. D., & Banat, I. M. (1997). Microbiology and Molecular Biology Reviews, 61, 47–64.Google Scholar
  3. 3.
    Georgiou, G., Lin, S. C., & Sharma, M. M. (1992). Bio-Technology, 10, 60–65.Google Scholar
  4. 4.
    Mukherjee, S., Das, P., & Sen, R. (2006). Trends in Biotechnology, 24, 509–15.CrossRefGoogle Scholar
  5. 5.
    Nandy, T., Shastry, S., & Kaul, S. N. (2002). Journal of Environmental Management, 65, 25–38.CrossRefGoogle Scholar
  6. 6.
    Wilkie, A. C., Riedesel, K. J., & Owens, J. M. (2000). Biomass Bioenergy, 19, 63–102.CrossRefGoogle Scholar
  7. 7.
    Shojaosadati, S. A., Khalilzadeh, R., Jalilzadeh, A., & Sanaei, H. R. (1999). Resources, Conservation and Recycling, 27, 125–38.CrossRefGoogle Scholar
  8. 8.
    Jain, D. K., Collinsthompson, D. L., Lee, H., & Trevors, J. T. (1991). Journal of Microbiological Methods, 13, 271–79.CrossRefGoogle Scholar
  9. 9.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–56.CrossRefGoogle Scholar
  10. 10.
    Deziel, E., Lepine, F., Milot, S., & Villemur, R. (2000). Biochimica Et Biophysica Acta Molecular and Cell Biology of Lipids, 1485, 145–52.CrossRefGoogle Scholar
  11. 11.
    Soberon-Chavez, G., Lepine, F., & Deziel, E. (2005). Applied Microbiology and Biotechnology, 68, 718–25.CrossRefGoogle Scholar
  12. 12.
    Perfumo, A., Banat, I. M., Canganella, F., & Marchant, R. (2006). Applied Microbiology and Biotechnology, 72, 132–38.CrossRefGoogle Scholar
  13. 13.
    Maier, R. M., & Soberon-Chavez, G. (2000). Applied Microbiology and Biotechnology, 54, 625–33.CrossRefGoogle Scholar
  14. 14.
    Zhu, Y., Gan, J. J., Zhang, G. L., Yao, B., Zhu, W. J., & Meng, Q. (2007). Journal of Zhejiang University Science A, 8, 1514–20.CrossRefGoogle Scholar
  15. 15.
    Sim, L., Ward, O. P., & Li, Z. Y. (1997). Journal of Industrial Microbiology & Biotechnology, 19, 232–38.CrossRefGoogle Scholar
  16. 16.
    Abalos, A., Maximo, F., Manresa, M. A., & Bastida, J. (2002). Journal of Chemical Technology and Biotechnology, 77, 777–84.CrossRefGoogle Scholar
  17. 17.
    Lee, K. M., Hwang, S. H., Ha, S. D., Jang, J. H., Lim, D. J., & Kong, J. Y. (2004). Biotechnology and Bioprocess Engineering, 9, 267–73.CrossRefGoogle Scholar
  18. 18.
    Wu, J. Y., Yeh, K. L., Lu, W. B., Lin, C. L., & Chang, J. S. (2008). Bioresource Technology, 99, 1157–64.CrossRefGoogle Scholar
  19. 19.
    Lee, Y., Lee, S. Y., & Yang, J. W. (1999). Bioscience, Biotechnology, and Biochemistry, 63, 946–47.CrossRefGoogle Scholar
  20. 20.
    Dubey, K., & Juwarkar, A. (2001). World Journal of Microbiology & Biotechnology, 17, 61–69.CrossRefGoogle Scholar
  21. 21.
    Patel, R. M., & Desai, A. J. (1997). Letters in Applied Microbiology, 25, 91–94.CrossRefGoogle Scholar
  22. 22.
    Wei, Y. H., Chou, C. L., & Chang, J. S. (2005). Biochemical Engineering Journal, 27, 146–54.CrossRefGoogle Scholar
  23. 23.
    Trummler, K., Effenberger, F., & Syldatk, C. (2003). European Journal of Lipid Science and Technology, 105, 563–71.CrossRefGoogle Scholar
  24. 24.
    Jia, C. Y., Kang, R. J., Zhang, Y. H., Cong, W., & Cai, Z. L. (2007). Bioresource Technology, 98, 967–70.CrossRefGoogle Scholar
  25. 25.
    Deziel, E., Lepine, F., Dennie, D., Boismenu, D., Mamer, O. A., & Villemur, R. (1999). Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 1440, 244–52.CrossRefGoogle Scholar
  26. 26.
    Thanomsub, B., Pumeechockchai, W., Limtrakul, A., Arunrattiyakorn, P., Petchleelaha, W., Nitoda, T., et al. (2006). Bioresource Technology, 97, 2457–61.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.South China Botanical GardenChinese Academy of SciencesGuangzhouChina
  2. 2.Guangdong Institute of MicrobiologyGuangdong Provincial Key Laboratory of Microbial Culture Collection and Application GuangzhouGuangzhouChina

Personalised recommendations