Applied Biochemistry and Biotechnology

, Volume 163, Issue 2, pp 278–295

Co-culture Based Blood-brain Barrier In Vitro Model, a Tissue Engineering Approach using Immortalized Cell Lines for Drug Transport Study

  • Zhiqi Zhang
  • Anthony J. McGoron
  • Eric T. Crumpler
  • Chen-Zhong Li
Article

Abstract

This study evaluated the feasibility of using commercially available immortalized cell lines in building an in vitro blood-brain barrier (BBB) co-culture model for preliminary drug development studies. Astrocytes-derived acellular extracellular matrix (aECM) was introduced in the co-culture model to provide a novel biomimetic basement membrane for the endothelial cells to form tight junctions. Trans-Endothelial Electrical Resistance (TEER) and solute mass transport studies quantitatively evaluated the tight junction formation. Immuno-fluorescence microscopy and Western blot analysis qualitatively verified the expression of occludin, one of the tight junction proteins on the samples. Experimental data from a total of 13 experiments conclusively showed that the novel BBB in vitro co-culture model with aECM (CO + aECM) is promising in terms of establishing tight junction formation represented by TEER values, transport profiles, and tight junction protein expression when compared with traditional co-culture (CO) model setup or the endothelial cells cultured alone (EC). In vitro colorimetric sulforhodamine B (SRB) assay also revealed that the “CO + aECM” samples resulted in less cell loss on the basal sides of the insert membranes than traditional co-culture models. Our novel approach using immortalized cell lines with the addition of aECM was proven to be a feasible and repeatable alternative to the traditional BBB in vitro modeling.

Keywords

Blood-brain barrier Co-culture In vitro Transport Drug delivery Membrane impedance Western blot Tight junction Occludin 

References

  1. 1.
    Zhang, Y., & Miller, D. W. (2005). Drug Delivery Principles and Applications. In B. Wang, T. Siahaan, & R. A. Soltero (Eds.), Hoboken. New Jersey: John Wiley & Sons, Inc.Google Scholar
  2. 2.
    Garcia-Garcia, E., Gil, S., Andrieux, K., Desmaele, D., Nicolas, V., Taran, F., et al. (2005). Cellular and Molecular Life Sciences, 62(12), 1400–1408.CrossRefGoogle Scholar
  3. 3.
    Engelhardt, B. (2003). Cell and Tissue Research, 314(1), 119–129.CrossRefGoogle Scholar
  4. 4.
    Hawkins, B. T., & Davis, T. P. (2005). Revelation, 57(2), 173–185.Google Scholar
  5. 5.
    Zlokovic, B. V. (2008). Neuron, 57(2), 178–201.CrossRefGoogle Scholar
  6. 6.
    Pardridge, W. M. (1999). Journal of Neurovirology, 5(6), 556–569.CrossRefGoogle Scholar
  7. 7.
    Rubin, L. L., & Staddon, J. M. (1999). Annual Review of Neuroscience, 22(1), 11–28.CrossRefGoogle Scholar
  8. 8.
    Haseloff, R. F., Blasig, I. E., Bauer, H. C., & Bauer, H. (2008). BBA-Biomembranes., 1778(3), 588–600.CrossRefGoogle Scholar
  9. 9.
    Kacem, K., Lacombe, P., Seylaz, J., & Bonvento, G. (1998). Glia, 23(1), 1–10.CrossRefGoogle Scholar
  10. 10.
    Barrios-Rodiles, Brown, M. K. R., Ozdamar, B., Bose, R., Liu, Z., Donovan, R. S., et al. (2005). Science, 307(5715), 1621–1625.CrossRefGoogle Scholar
  11. 11.
    Li, D., & Mrsny, R. J. (2000). The Journal of Cell Biology, 148(4), 791–800.CrossRefGoogle Scholar
  12. 12.
    Yu, A. S. L., McCarthy, K. M., Francis, S. A., McCormack, J. M., Lai, J., Rogers, R. A., et al. (2005). American Journal of Physiology. Cell Physiology, 288(6), 1231–1241.CrossRefGoogle Scholar
  13. 13.
    Murata, M., Kojima, T., Yamamoto, T., Go, M., Takano, K., Osanai, M., et al. (2005). Experimental Cell Research, 310(1), 140–151.CrossRefGoogle Scholar
  14. 14.
    Osanai, M., Murata, M., Nishikiori, N., Chiba, H., Kojima, T., & Sawada, N. (2006). Cancer Research, 66(18), 9125–9133.CrossRefGoogle Scholar
  15. 15.
    Wang, Z., Mandell, K. J., Parkos, C. A., Mrsny, R. J., & Nusrat, A. (2005). Oncogene, 24(27), 4412–4420.CrossRefGoogle Scholar
  16. 16.
    Mizuguchi, H., Utoguchi, N., & Mayumi, T. (1997). Brain Research Protocols, 1(4), 339–343.CrossRefGoogle Scholar
  17. 17.
    Abbott, N. J., Rönnbäck, L., & Hansson, E. (2006). Nature Reviews. Neuroscience, 7(1), 41–53.CrossRefGoogle Scholar
  18. 18.
    Haring, H. P., Akamine, B. S., Habermann, R., Koziol, J. A., & Del Zoppo, G. J. (1996). Neuropath. Exp. Neur., 55(2), 236–245.CrossRefGoogle Scholar
  19. 19.
    Milner, R., & Campbell, I. L. (2002). Molecular and Cellular Neurosciences, 20(4), 616–626.CrossRefGoogle Scholar
  20. 20.
    Abbott, N. J. (2004). Drug. Discov. Today.: Technologies, 1(4), 407–416.CrossRefGoogle Scholar
  21. 21.
    Garberg, P., Ball, M., Borg, N., Cecchelli, R., Fenart, L., Hurst, R. D., et al. (2005). Toxicol In Vitro, 19(3), 299–334.CrossRefGoogle Scholar
  22. 22.
    Yoo, J. W., Kim, Y. S., Lee, S. H., Lee, M. K., Roh, H. J., Jhun, B. H., et al. (2003). Pharmaceutical Research, 20(10), 1690–1696.CrossRefGoogle Scholar
  23. 23.
    Li, C.-Z., Taniguchi, I., & Mulchandani, A. (2009). Bioelectrochemistry, 75, 182–188.CrossRefGoogle Scholar
  24. 24.
    Gray, T. E., Guzman, K., Davis, C. W., Abdullah, L. H., & Nettesheim, P. (1996). Am. J. Resp. Cell. Mol., 14(1), 104–112.Google Scholar
  25. 25.
    Levashova, Z. B., Plisov, S. Y., & Perantoni, A. O. (2003). Kidney International, 63(6), 2075–2087.CrossRefGoogle Scholar
  26. 26.
    Li, C.-Z., Nishiyama, K., Taniguchi, I. (2000). Electrochimica Acta, 45, 2883–2888.Google Scholar
  27. 27.
    Radany, E. H., Brenner, M., Besnard, F., Bigornia, V., Bishop, J. M., & Deschepper, C. F. (1992). P. Natl. Acad. Sci. USA, 89(14), 6467–6471.CrossRefGoogle Scholar
  28. 28.
    Hurst, R. D., & Fritz, I. B. (1996). Journal of Cellular Physiology, 167(1), 81–88.CrossRefGoogle Scholar
  29. 29.
    Vichai, V., & Kirtikara, K. (2006). Nature Protocols, 1(2), 1112–1116.CrossRefGoogle Scholar
  30. 30.
    Flaten, G. E., Dhanikula, A. B., Luthman, K., & Brandl, M. (2006). European Journal of Pharmaceutical Sciences, 27(1), 80–90.CrossRefGoogle Scholar
  31. 31.
    McCall, A. L., Millington, W. R., & Wurtman, R. J. (1982). Life Sciences, 31, 2709–2715.CrossRefGoogle Scholar
  32. 32.
    Nakazono, T., Murakami, T., Sakai, S., Higashi, Y., & Yata, N. (1992). Chemical & Pharmaceutical Bulletin, 40, 2510–2515.Google Scholar
  33. 33.
    Sadzuka, Y., Hatakeyama, H., Daimon, T., & Sonobe, T. (2008). International Journal of Pharmaceutics, 354(1–2), 63–69.CrossRefGoogle Scholar
  34. 34.
    Diglio, C. A., Grammas, P., Giacomelli, F., & Wiener, J. (1982). Laboratory Investigation, 46(6), 554–563.Google Scholar
  35. 35.
    Herrmann, J., Gressner, A. M., & Weiskirchen, R. (2007). Journal of Cellular and Molecular Medicine, 11(4), 704–722.CrossRefGoogle Scholar
  36. 36.
    Kuchler-Bopp, S., Delaunoy, J. P., Artault, J. C., Zaepfel, M., & Dietrich, J. B. (1999). NeuroReport, 10(6), 1347–1353.CrossRefGoogle Scholar
  37. 37.
    Hurst, R. D., Heales, S. J. R., Dobbie, M. S., Barker, J. E., & Clark, J. B. (1998). Brain Research, 802(1–2), 232–240.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Zhiqi Zhang
    • 1
  • Anthony J. McGoron
    • 1
  • Eric T. Crumpler
    • 1
  • Chen-Zhong Li
    • 1
  1. 1.Department of Biomedical EngineeringFlorida International UniversityMiamiUSA

Personalised recommendations