Applied Biochemistry and Biotechnology

, Volume 162, Issue 6, pp 1585–1598 | Cite as

Expression, High Cell Density Culture and Purification of Recombinant EC-SOD in Escherichia coli

  • Young-Jin Son
  • Ji-Young Bae
  • Seon-Ha Chong
  • Hui Sun Lee
  • Sang Hyun Mo
  • Tae Yoon Kim
  • Han ChoeEmail author


Superoxide dismutase (SOD) catalyzes the dismutation of the biologically toxic superoxide anion into oxygen and hydrogen peroxide and is deployed by the immune system to kill invading microorganisms. Extracellular SOD (EC-SOD) is a copper- and zinc-containing glycoprotein found predominantly in the soluble extracellular compartment that consists of ∼30-kDa subunits. Here, we purified recombinant EC-SOD3 (rEC-SOD) from Escherichia coli BL21(DE3) expressing a pET-SOD3-1 construct. Cells were cultured by high-density fed-batch fermentation to a final OD600 of 51.8, yielding a final dry cell weight of 17.6 g/L. rEC-SOD, which was expressed as an inclusion body, comprised 48.7% of total protein. rEC-SOD was refolded by a simple dilution refolding method and purified by cation-exchange and reverse-phase chromatography. The highly purified rEC-SOD thus obtained was a mixture of monomers and dimers, both of which were active. The molecular weights of monomeric and dimeric rEC-SOD were 25,255 and 50,514 Da, respectively. The purified rEC-SOD had 4.3 EU/mg of endotoxin and the solubility of rEC-SOD was more than 80% between pH 7 and 10. In 2 L of fed-batch fermentation, 60 mg of EC-SOD (99.9% purity) could be produced and total activity was 330.24 U. The process established in this report, involving high-cell-density fermentation, simple dilution refolding, and purification with ion-exchange and reverse-phase chromatography, represents a commercially viable process for producing rEC-SOD.


rEC-SOD Fermentation Refolding Purification MALDI-TOF 



This work was supported by Priority Research Center Program (2009-009454) and a grant (2009-0075362) through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology.


  1. 1.
    Weisiger, R. A., & Fridovich, I. (1973). Journal of Biological Chemistry, 248, 3582–3592.Google Scholar
  2. 2.
    Zhu, D., & Scandalios, J. G. (1992). Genetics, 131, 803–809.Google Scholar
  3. 3.
    Wahlund, G., Marklund, S. L., & Sjoquist, P. O. (1992). Free Radical Research Communications, 17, 41–47.CrossRefGoogle Scholar
  4. 4.
    Zelko, I. N., Mariani, T. J., & Folz, R. J. (2002). Free Radical Biology & Medicine, 33, 337–349.CrossRefGoogle Scholar
  5. 5.
    Marklund, S. L. (1982). Proceedings of the National Academy of Sciences of the United States of America, 79, 7634–7638.CrossRefGoogle Scholar
  6. 6.
    He, H. J., Yuan, Q. S., Yang, G. Z., & Wu, X. F. (2002). Protein Expression and Purification, 24, 13–17.CrossRefGoogle Scholar
  7. 7.
    Petersen, S. V., Oury, T. D., Ostergaard, L., Valnickova, Z., Wegrzyn, J., Thogersen, I. B., et al. (2004). Journal of Biological Chemistry, 279, 13705–13710.CrossRefGoogle Scholar
  8. 8.
    Oury, T. D., Crapo, J. D., Valnickova, Z., & Enghild, J. J. (1996). Biochemical Journal, 317, 51–57.Google Scholar
  9. 9.
    Petersen, S. V., Oury, T. D., Valnickova, Z., Thogersen, I. B., Hojrup, P., Crapo, J. D., et al. (2003). Proceedings of the National Academy of Sciences of the United States of America, 100, 13875–13880.CrossRefGoogle Scholar
  10. 10.
    Stenlund, P., Andersson, D., & Tibell, L. A. (1997). Protein Science, 6, 2350–2358.CrossRefGoogle Scholar
  11. 11.
    Tibell, L. A., Skarfstad, E., & Jonsson, B. H. (1996). Biochimica et Biophysica Acta, 1292, 47–52.Google Scholar
  12. 12.
    Sandstrom, J., Carlsson, L., Marklund, S. L., & Edlund, T. (1992). Journal of Biological Chemistry, 267, 18205–18209.Google Scholar
  13. 13.
    Petersen, S. V., Olsen, D. A., Kenney, J. M., Oury, T. D., Valnickova, Z., Thogersen, I. B., et al. (2005). Biochemical Journal, 385, 427–432.CrossRefGoogle Scholar
  14. 14.
    Nozik-Grayck, E., Suliman, H. B., & Piantadosi, C. A. (2005). International Journal of Biochemistry and Cell Biology, 37, 2466–2471.CrossRefGoogle Scholar
  15. 15.
    Landmesser, U., Merten, R., Spiekermann, S., Buttner, K., Drexler, H., & Hornig, B. (2000). Circulation, 101, 2264–2270.Google Scholar
  16. 16.
    Adachi, T., Ohta, H., Hayashi, K., Hirano, K., & Marklund, S. L. (1992). Free Radical Biology & Medicine, 13, 205–210.CrossRefGoogle Scholar
  17. 17.
    Faraci, F. M., & Didion, S. P. (2004). Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1367–1373.CrossRefGoogle Scholar
  18. 18.
    Oury, T. D., Schaefer, L. M., Fattman, C. L., Choi, A., Weck, K. E., & Watkins, S. C. (2002). American Journal of Physiology. Lung Cellular and Molecular Physiology, 283, 777–784.Google Scholar
  19. 19.
    Mamo, L. B., Suliman, H. B., Giles, B. L., Auten, R. L., Piantadosi, C. A., & Nozik-Grayck, E. (2004). American Journal of Respiratory and Critical Care Medicine, 170, 313–318.CrossRefGoogle Scholar
  20. 20.
    Carlsson, L. M., Jonsson, J., Edlund, T., & Marklund, S. L. (1995). Proceedings of the National Academy of Sciences of the United States of America, 92, 6264–6268.CrossRefGoogle Scholar
  21. 21.
    Folz, R. J., Abushamaa, A. M., & Suliman, H. B. (1999). Journal of Clinical Investigation, 103, 1055–1066.CrossRefGoogle Scholar
  22. 22.
    Bowler, R. P., Nicks, M., Tran, K., Tanner, G., Chang, L. Y., Young, S. K., et al. (2004). American Journal of Respiratory Cell and Molecular Biology, 31, 432–439.CrossRefGoogle Scholar
  23. 23.
    Tan, R. J., Fattman, C. L., Watkins, S. C., & Oury, T. D. (2004). Journal of Applied Physiology, 97, 2006–2013.CrossRefGoogle Scholar
  24. 24.
    Bowler, R. P., Nicks, M., Warnick, K., & Crapo, J. D. (2002). American Journal of Physiology. Lung Cellular and Molecular Physiology, 282, 719–726.Google Scholar
  25. 25.
    Demchenko, I. T., Oury, T. D., Crapo, J. D., & Piantadosi, C. A. (2002). Circulation Research, 91, 1031–1037.CrossRefGoogle Scholar
  26. 26.
    Suliman, H. B., Ali, M., & Piantadosi, C. A. (2004). Blood, 104, 43–50.CrossRefGoogle Scholar
  27. 27.
    Tibell, L., Hjalmarsson, K., Edlund, T., Skogman, G., Engstrom, A., & Marklund, S. L. (1987). Proceedings of the National Academy of Sciences of the United States of America, 84, 6634–6638.CrossRefGoogle Scholar
  28. 28.
    Chen, H. L., Yen, C. C., Tsai, T. C., Yu, C. H., Liou, Y. J., Lai, Y. W., et al. (2006). Journal of Agricultural and Food Chemistry, 54, 8041–8047.CrossRefGoogle Scholar
  29. 29.
    Ryu, K., Kim, Y. H., Kim, Y., Lee, J. S., Jeon, B., & Kim, T. Y. (2008). Journal of Microbiology and Biotechnology, 18, 1648–1654.Google Scholar
  30. 30.
    Zhu, X. Q., Li, S. X., He, H. J., & Yuan, Q. S. (2005). Acta Biochim Biophys. Sin. (Shanghai), 37, 265–269.CrossRefGoogle Scholar
  31. 31.
    Jez, J. M., Ferrer, J. L., Bowman, M. E., Dixon, R. A., & Noel, J. P. (2000). Biochemistry, 39, 890–902.CrossRefGoogle Scholar
  32. 32.
    Bauer, S., & Shiloach, J. (1974). Biotechnology and Bioengineering, 16, 933–941.CrossRefGoogle Scholar
  33. 33.
    Nakane, H., Chu, Y., Faraci, F. M., Oberley, L. W., & Heistad, D. D. (2001). Stroke, 32, 184–189.Google Scholar
  34. 34.
    Middelberg, A. P., & O'Neill, B. K. (1991). Australian Journal of Biotechnology, 5, 87–89.Google Scholar
  35. 35.
    Khalilzadeh, R., Shojaosadati, S. A., Bahrami, A., & Maghsoudi, N. (2003). Biotechnological Letters, 25, 1989–1992.CrossRefGoogle Scholar
  36. 36.
    Fattman, C. L., Enghild, J. J., Crapo, J. D., Schaefer, L. M., Valnickova, Z., & Oury, T. D. (2000). Biochemical and Biophysical Research Communications, 275, 542–548.CrossRefGoogle Scholar
  37. 37.
    Enghild, J. J., Thogersen, I. B., Oury, T. D., Valnickova, Z., Hojrup, P., & Crapo, J. D. (1999). Journal of Biological Chemistry, 274, 14818–14822.CrossRefGoogle Scholar
  38. 38.
    Bowler, R. P., Nicks, M., Olsen, D. A., Thogersen, I. B., Valnickova, Z., Hojrup, P., et al. (2002). Journal of Biological Chemistry, 277, 16505–16511.CrossRefGoogle Scholar
  39. 39.
    Olsen, D. A., Petersen, S. V., Oury, T. D., Valnickova, Z., Thogersen, I. B., Kristensen, T., et al. (2004). Journal of Biological Chemistry, 279, 22152–22157.CrossRefGoogle Scholar
  40. 40.
    Edlund, A., Edlund, T., Hjalmarsson, K., Marklund, S. L., Sandstrom, J., Stromqvist, M., et al. (1992). Biochemical Journal, 288, 451–456.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Young-Jin Son
    • 1
    • 4
  • Ji-Young Bae
    • 1
  • Seon-Ha Chong
    • 1
  • Hui Sun Lee
    • 1
  • Sang Hyun Mo
    • 2
  • Tae Yoon Kim
    • 3
  • Han Choe
    • 1
    Email author
  1. 1.Department of Physiology and Research Institute for BiomacromoleculesUniversity of Ulsan College of MedicineSeoulSouth Korea
  2. 2.Nanomol Co., LtdSeoulSouth Korea
  3. 3.Laboratory of Dermato-Immunology, College of MedicineThe Catholic University of KoreaSeoulSouth Korea
  4. 4.Biotechnology Core LaboratoryBethesdaUSA

Personalised recommendations