Optimizing Dilute-Acid Pretreatment of Rapeseed Straw for Extraction of Hemicellulose

  • Tae-Su Jeong
  • Byung-Hwan Um
  • Jun-Seok Kim
  • Kyeong-Keun Oh
Article

Abstract

Biological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide fraction into monomeric sugars prior to fermentation. Hydrolysis can be performed enzymatically or with mineral acids. In this study, dilute sulfuric acid was used as a catalyst for the pretreatment of rapeseed straw. The purpose of this study is to optimize the pretreatment process in a 15-mL bomb tube reactor and investigate the effects of the acid concentration, temperature, and reaction time. These parameters influence hemicellulose removal and production of sugars (xylose, glucose, and arabinose) in the hydrolyzate as well as the formation of by-products (furfural, 5-hydroxymethylfurfural, and acetic acid). Statistical analysis was based on a model composition corresponding to a 33 orthogonal factorial design and employed the response surface methodology to optimize the pretreatment conditions, aiming to attain maximum xylan, mannan, and galactan (XMG) extraction from hemicellulose of rapeseed straw. The obtained optimum conditions were: H2SO4 concentration of 1.76% and temperature of 152.6 °C with a reaction time of 21 min. Under these optimal conditions, 85.5% of the total sugar was recovered after acid hydrolysis (78.9% XMG and 6.6% glucan). The hydrolyzate contained 1.60 g/L glucose, 0.61 g/L arabinose, 10.49 g/L xylose, mannose, and galactose, 0.39 g/L cellobiose, 0.94 g/L fructose, 0.02 g/L 1,6-anhydro-glucose, 1.17 g/L formic acid, 2.94 g/L acetic acid, 0.04 g/L levulinic acid, 0.04 g/L 5-hydroxymethylfurfural, and 0.98 g/L furfural.

Keywords

Rapeseed straw Response surface methodology (RSM) Sulfuric acid Pretreatment 

References

  1. 1.
    Petersson, A., Thomsen, M. H., Hauggaard-Nielsen, H., & Thomsen, A. B. (2007). Biomass and Bioenergy, 31(11–12), 812–819.CrossRefGoogle Scholar
  2. 2.
    Pimentel, D., & Patzek, T. W. (2005). Natural Resources Research, 14(1), 65–76.CrossRefGoogle Scholar
  3. 3.
    Farell, A. E., Pelvin, R. J., Turner, B. T., Jones, A. D., O’Hare, M., & Kammen, D. M. (2006). Science, 311, 506–508.CrossRefGoogle Scholar
  4. 4.
    Wyman, C. E. (1996). Ethanol production from lignocellulosic biomass: Overview. In C. E. Wyman (Ed.), Handbook on bioethanol, production and utilization (pp. 1–18). Washington DC: Taylor & Francis.Google Scholar
  5. 5.
    Sheehan, J., & Himmel, M. (1999). Biotechnology Progress, 15, 817–827.CrossRefGoogle Scholar
  6. 6.
    Zhao, Y., Wang, Y., Zhu, J. Y., Ragauskas, A., & Deng, Y. (2008). Biotechnology and Bioenergy, 99, 1320–1328.CrossRefGoogle Scholar
  7. 7.
    Lu, X. B., Zhang, Y. M., Yang, J., & Liang, Y. (2007). Chemical Engineering and Technology, 30, 938–944.CrossRefGoogle Scholar
  8. 8.
    Rowell, R. M., & Keany, F. M. (1991). Wood Fiber Sci, 23, 15–22.Google Scholar
  9. 9.
    Sun, X. F., Sun, R. C., & Sun, J. X. (2002). Journal of Agricultural and Food Chemistry, 50, 6428–6433.CrossRefGoogle Scholar
  10. 10.
    Gong, C. S., Chen, C. S., & Chen, L. F. (1993). Applied Biochemistry and Biotechnology, 39/40, 83–88.CrossRefGoogle Scholar
  11. 11.
    Almazán, O., González, L., & Gálvez, L. (2001). Sugar Cane International, 7, 3–8.Google Scholar
  12. 12.
    Um, B. H., & van Walsum, G. P. (2009). Applied Biochemistry and Biotechnology, 153(1-3), 157–183.CrossRefGoogle Scholar
  13. 13.
    Kim, S. B., Um, B. H., & Park, S. C. (2001). Applied Biochemistry and Biotechnology, 91–93, 81–94.CrossRefGoogle Scholar
  14. 14.
    Zaldivar, J., Nielsen, J., & Olsson, L. (2001). Applied Microbiology and Biotechnology, 56, 17–34.CrossRefGoogle Scholar
  15. 15.
    Lynd, L. R., Wyman, C. E., & Gerngross, T. U. (1999). Biotechnology Progress, 15, 777–793.CrossRefGoogle Scholar
  16. 16.
    Han, K. H., Ko, J. H., & Yang, S. H. (2007). Biofuels Bioproducts and Biorefining, 1, 135–146.CrossRefGoogle Scholar
  17. 17.
    Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83(1), 1–11.CrossRefGoogle Scholar
  18. 18.
    Galbe, M., Sassner, P., Wingren, A., & Zacchi, G. (2007). Advances in Biochemical Engineering/Biotechnology, 108, 303–327.CrossRefGoogle Scholar
  19. 19.
    Um, B. H., Karim, M. N., & Henk, L. L. (2003). Applied Biochemistry and Biotechnology, 105, 115–126.CrossRefGoogle Scholar
  20. 20.
    Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J. et al. (2002). Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis of Corn Stover, NREL/TP-510-32438.Google Scholar
  21. 21.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Bioresource Technology, 96(6), 673–686.CrossRefGoogle Scholar
  22. 22.
    Pu, Y., Zhang, D., Singh, P. M., & Ragauskas, A. J. (2008). Biofuels Bioproducts and Biorefining, 2(1), 58–73.CrossRefGoogle Scholar
  23. 23.
    Overend, R. P., & Chornet, E. (1987). Philosophical Transactions of the Royal Society, A321, 523–536.Google Scholar
  24. 24.
    Chum, H. L., Johnson, D. K., Black, S. K., & Overend, R. O. (1991). Applied Biochemistry and Biotechnology, 24–25, 1–14.Google Scholar
  25. 25.
    Abatzoglou, N., Chornet, E., Belkacemi, K., & Overend, R. P. (1992). Chemical Engineering Science, 47(5), 1109–1122.CrossRefGoogle Scholar
  26. 26.
    Garrote, G., Dominguez, H., & Parajo, J. C. (1999). Holz Roh Werkstoff, 57, 191–202.CrossRefGoogle Scholar
  27. 27.
    Lu, X., Zhang, Y., & Angerlidaki, I. (2008). Bioresource Technology, 100, 3048–3053.CrossRefGoogle Scholar
  28. 28.
    Giovanni, M. (1983). Food Technology, 37, 96–105.Google Scholar
  29. 29.
    NREL. (2004). Chemical Analysis and Testing Laboratory Analytical Procedures (CAT). Golden: National Renewable Energy Laboratory.Google Scholar
  30. 30.
    Jørgensen, H., Kristensen, J. B., & Felby, C. (2007). Biofuels Bioproducts and Biorefining, 1, 119–134.CrossRefGoogle Scholar
  31. 31.
    Kim, T. H., Kim, J. S., Sunwoo, C., & Lee, Y. Y. (2003). Bioresource Technology, 90, 39–47.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Tae-Su Jeong
    • 1
  • Byung-Hwan Um
    • 2
  • Jun-Seok Kim
    • 3
  • Kyeong-Keun Oh
    • 1
  1. 1.Department of Applied Chemical EngineeringDankook UniversityCheonanKorea
  2. 2.Forest Bioproducts Research Initiative, Department of Chemical and Biological EngineeringUniversity of MaineOronoUSA
  3. 3.Department of Applied Chemical EngineeringKyonggi UniversitySuwonKorea

Personalised recommendations