Applied Biochemistry and Biotechnology

, Volume 162, Issue 5, pp 1225–1237 | Cite as

Diversity of Sulfur-Oxidizing Bacteria in Greenwater System of Coastal Aquaculture

  • Kishore Kumar KrishnaniEmail author
  • V. Kathiravan
  • M. Natarajan
  • M. Kailasam
  • S. M. Pillai


Reduced sulfur compounds produced by the metabolism are the one of the major problems in aquaculture. In the present study, herbivorous fishes have been cultured as biomanipulators for secretions of slime, which enhanced the production of greenwater containing beneficial bacteria. The genes encoding soxB which is largely unique to sulfur-oxidizing bacteria (SOB) due to its hydrolytic function has been targeted for examining the diversity of SOB in the green water system of coastal aquaculture. Novel sequences obtained based on the sequencing of metagenomic clone libraries for soxB genes revealed the abundance of SOB in green water system. Phylogenetic tree constructed from aligned amino acid sequences demonstrated that different clusters have only 82–93% match with Roseobacter sp., Phaeobacter sp., Roseovarius sp., Sulfitobacter sp., Ruegeria sp., and Oceanibulbus sp. The level of conservation of the soxB amino acid sequences ranged from 42% to 71%. 16S rRNA gene analyses of enrichment culture from green water system revealed the presence of Pseudoxanthomonas sp., which has 97% similarity with nutritionally fastidious Indian strain of Pseudoxanthomonas mexicana—a sulfur chemolithotrophic γ-proteobacterium. Our results illustrate the relevance of SOB in the functioning of the green water system of coastal shrimp aquaculture for oxidation of reduced sulfur compounds, which in turn maintain the sulfide concentration well within the prescribed safe levels.


Diversity Sulfur-oxidizing bacteria soxB gene 16S rRNA Greenwater Coastal aquaculture 



Authors are grateful to Dr. A. G. Ponniah, Director, Central Institute of Brackishwater Aquaculture, Chennai for providing facilities to carry out this work. Financial assistance from Department of Biotechnology, Ministry of Science and Technology is gratefully acknowledged.


  1. 1.
    Sachidanandamurthy, K. L., & Yajurvedi, H. N. (2006). A study on physicochemical parameters of an aquaculture body in Mysore city, Karnataka. India J Environ Biol, 27(4), 615–618.Google Scholar
  2. 2.
    Baliao, D. D., De Los Santo, M. A., & Franco, N. M. (1999). Milkfish pond culture. Aquaculture Extension manual no. 25. Ilo-ilo: SEAFDEC.Google Scholar
  3. 3.
    Baliao, D. D. (2000). Environment-friendly schemes in intensive shrimp farming. State of the art Series. Ilo-ilo: SEAFDEC.Google Scholar
  4. 4.
    Bagarinao, T. (1998). Historical and current trends in milkfish farming in the Philippines. In S. S. de Silva (Ed.), Tropical mariculture (pp. 381–422). London: Academic.CrossRefGoogle Scholar
  5. 5.
    de la Rosa, J. S. (2004). Greenwater technology: A new shrimp culture technique. BAR Digest,
  6. 6.
    Yearlsley, G. K. (1999). Australian seafood handbook. Hobart: CSIRO Marine Research.Google Scholar
  7. 7.
    Tookwinas, S. (2000). Closed-recirculating shrimp farming system. State of the art series. Ilo-ilo: SEAFDEC.Google Scholar
  8. 8.
    Krishnani, K. K., Shekhar, M. S., Gupta, B. P., & Gopikrishna, G. (2009). Sequence similarity based identification of nitrifying bacteria in coastal aquaculture for bioremediation predictability. Asian Fisheries Science, 22, 41–49.Google Scholar
  9. 9.
    Krishnani, K. K., Shekhar, M. S., Gopikrishna, G., & Gupta, B. P. (2009). Molecular biological characterization and biostimulation of ammonia oxidizing bacteria in brackishwater aquaculture. Journal of Environmental Science and Health, A-l44(14), 1–11.Google Scholar
  10. 10.
    Ghosh, W., & Roy, P. (2007). Chemolithotrophic oxidation of thiosulphate and tetrathionate by novel strains of Azospirillum and Pseudoxanthomonas isolated from the rhizosphere of an Indian tropical leguminous plant. Current Science, 93(11), 1613–1615.Google Scholar
  11. 11.
    Ghosh, W., & Roy, P. (2006). Mesorhizobium thiogangeticum sp. nov., a novel sulfur-oxidizing chemolithoautotroph from rhizosphere soil of an Indian tropical leguminous plant. International Journal of Systematic and Evolutionary Microbiology, 56, 91–97.CrossRefGoogle Scholar
  12. 12.
    Kumar, P. A., Jyothsna, T. S., Srinivas, T. N., Sasikala, C. H., Ramana, C. H. V., & Imhoff, J. F. (2007). Marichromatium bheemlicum sp. nov., a non-diazotrophic, photosynthetic gammaproteobacterium from a marine aquaculture pond. International Journal of Systematic and Evolutionary Microbiology, 57, 1261–1265.CrossRefGoogle Scholar
  13. 13.
    Srinivas, T. N., Kumar, P. A., Sasikala, C. H., & Ramana, C. H. V. (2007). Rhodovulum imhoffii sp. nov. International Journal of Systematic and Evolutionary Microbiology, 57(2), 228–232.CrossRefGoogle Scholar
  14. 14.
    Petri, R., Podgorsek, L., & Imhoff, F. (2001). Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiology Letters, 197, 171–178.CrossRefGoogle Scholar
  15. 15.
    Meyer, B., Imhoff, J. F., & Kuever, J. (2007). Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria - evolution of the Sox sulfur oxidation enzyme system. Environmental Microbiology, 9(12), 2957–2977.CrossRefGoogle Scholar
  16. 16.
    Chen, L., Li, W., Liu, S., Tao, M., Long, Y., Duan, W., et al. (2009). Novel genetic markers derived from the DNA fragments of sox genes. Molecular and Cellular Probes, 23, 157–165.CrossRefGoogle Scholar
  17. 17.
    Anandham, R., Indiragandhi, P., Madhaiyan, M., Ryu, K. Y., Jee, H. J., & Sa, T. M. (2008). Chemolithoautotrophic oxidation of thiosulfate and phylogenetic distribution of sulfur oxidation gene (soxB) in rhizobacteria isolated from crop plants. Research in Microbiology, 159, 579–589.CrossRefGoogle Scholar
  18. 18.
    Anandham, R., Indiragandhi, P., Madhaiyan, M., Chung, J., Ryu, K. Y., Jee, H. J., et al. (2009). Thiosulfate oxidation and mixotrophic growth of Methylobacterium goesingense and Methylobacterium fujisawaense. Journal of Microbiology and Biotechnology, 19(1), 17–22.Google Scholar
  19. 19.
    Sakano, Y., & Kerkhof, L. (1998). Assessment of changes in microbial community structure during operation of an ammonia biofilter with molecular tools. Applied and Environmental Microbiology, 64, 4877–4882.Google Scholar
  20. 20.
    Kelly, D. P., Shergill, J. K., Lu, W. P., & Wood, W. P. (1997). Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Van Leeuwenhoek, 71, 95–107.CrossRefGoogle Scholar
  21. 21.
    Kelly, D. P., & Wood, A. P. (2000). Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. International Journal of Systematic and Evolutionary Microbiology, 50, 511–516.Google Scholar
  22. 22.
    Ghosh, W., Mallick, S., & Dasgupta, S. K. (2009). Origin of the Sox multienzyme complex system in ancient thermophilic bacteria and coevolution of its constituent proteins. Research in Microbiology, 160(6), 409–420.CrossRefGoogle Scholar
  23. 23.
    Lahiri, C., Mandal, S., Ghosh, W., Dam, B., & Roy, P. (2006). A novel gene cluster soxSRT is essential for the chemolithotrophic oxidation of thiosulfate and tetrathionate by Pseudaminobacter salicylatoxidans KCT001. Current Microbiology, 52(4), 267–273.CrossRefGoogle Scholar
  24. 24.
    Welte, C., Hafner, S., Krätzer, C., Quentmeier, A., Friedrich, C. G., & Dahl, C. (2009). Interaction between Sox proteins of two physiologically distinct bacteria and a new protein involved in thiosulfate oxidation. FEBS Letters, 17(583(8)), 1281–1286.CrossRefGoogle Scholar
  25. 25.
    Wodara, C., Kostka, S., Egert, M., Kelly, D. P., & Friedrich, C. G. (1994). Identification and sequence analysis of the soxB gene essential for sulfur oxidation of Paracoccus denitrificans GB17. Journal of Bacteriology, 176(20), 6188–6191.Google Scholar
  26. 26.
    Lu, W.-P., & Kelly, D. P. (1983). Purification and some properties of two principal enzymes of the thiosulfate-oxidizing multi-enzyme system from Thiobacillus A2. Journal of General Microbiology, 129, 3549–3564.Google Scholar
  27. 27.
    Gonzalez, J. M., Kiene, R. P., & Moran, M. A. (1999). Transformation of sulfur compounds by an abundant lineage of marine bacteria in the subclass of the class Proteobacteria. Applied and Environmental Microbiology, 65, 3810–3819.Google Scholar
  28. 28.
    Swingley, W. D., Sadekar, S., Mastrian, S. D., Matthies, H. J., Hao, J., Ramos, H., et al. (2007). The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic rather than photosynthetic metabolism. Journal of Bacteriology, 189(3), 683–690.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kishore Kumar Krishnani
    • 1
    Email author
  • V. Kathiravan
    • 1
  • M. Natarajan
    • 1
  • M. Kailasam
    • 1
  • S. M. Pillai
    • 1
  1. 1.Central Institute of Brackishwater AquacultureChennaiIndia

Personalised recommendations