Advertisement

Applied Biochemistry and Biotechnology

, Volume 161, Issue 1–8, pp 411–422 | Cite as

Nitrogen Source Optimization for Cellulase Production by Penicillium funiculosum, using a Sequential Experimental Design Methodology and the Desirability Function

  • Roberto Nobuyuki Maeda
  • Mariana Mello Pereira da Silva
  • Lídia Maria Melo Santa Anna
  • Nei PereiraJr.
Article

Abstract

The present study aimed at maximizing cellulase production by Penicillium funiculosum using sequential experimental design methodology for optimizing the concentrations of nitrogen sources. Three sequential experimental designs were performed. The first and the second series of experiments consisted of a 24 and a 23 factorial designs, respectively, and in the third one, a central composite rotational design was used for better visualizing the optimum conditions. The following nitrogen sources were evaluated: urea, ammonium sulfate, peptone, and yeast extract. Peptone and ammonium sulfate were removed from the medium optimization since they did not present significant statistical effect on cellulase production. The optimal concentrations of urea and yeast extract predicted by the model were 0.97 and 0.36 g/L, respectively, which were validated experimentally. By the use of the desirability function, it was possible to maximize the three main enzyme activities simultaneously, which resulted in values for FPase of 227 U/L, for CMCase of 6,917 U/L, and for β-glucosidase of 1,375 U/L. These values corresponded to increases of 3.3-, 3.2-, and 6.7-folds, respectively, when compared to those obtained in the first experimental design. The results showed that the use of sequential experimental designs associated to the use of the desirability function can be used satisfactorily to maximize cellulase production by P. funiculosum.

Keywords

Cellulase Sugar cane bagasse Penicillium funiculosum Response surface methodology Nitrogen sources 

Notes

Acknowledgements

The authors acknowledge the Brazilian Council for Research (CNPq), the Rio de Janeiro State Foundation for Science and Technology (FAPERJ), and the Brazilian Petroleum Company (PETROBRAS) for scholarship and other financial supports.

References

  1. 1.
    Pereira, R. E. (2006). MSc Thesis. Escola de Química. Universidade Federal do Rio de JaneiroGoogle Scholar
  2. 2.
    Pereira, N., Jr., Couto, M. A. P. G., & Anna, L. M. M. S. (2008). Series on biotechnology (2nd ed., p. 45). Rio de Janeiro: Biblioteca Nacional.Google Scholar
  3. 3.
    Vasquez, M. P., Silva, J. N. C., Souza, M. B., Jr., & Pereira, N., Jr. (2007). Applied Biochemistry and Biotechnology, 137/140(12), 141–154.CrossRefGoogle Scholar
  4. 4.
    Schlitter, L. A. F. (2006). Msc Thesis. Escola de Química. Universidade Federal do Rio de JaneiroGoogle Scholar
  5. 5.
    Zabel, R. A., & Morrell, J. J. (1992). Wood microbiology, decay and its prevention. San Diego: Academic. 476p.Google Scholar
  6. 6.
    Marzluf, G. (1997). Microbiology and Molecular Biology Reviews, 61(1), 17–32.Google Scholar
  7. 7.
    Merrick, M. J., & Edwards, R. A. (1995). Microbiological Reviews, 59, 604–622.Google Scholar
  8. 8.
    Betancur, G. J. V. (2005). Msc Thesis. Escola de Química. Universidade Federal do Rio de JaneiroGoogle Scholar
  9. 9.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2005). NREL, 14 p.Google Scholar
  10. 10.
    Ververis, C., Georghiou, K., Danielidis, D., Hatzinikolaou, D. G., Santas, P., Santas, R., et al. (2007). Bioresource Technology, 98, 296–301.CrossRefGoogle Scholar
  11. 11.
    Ghose, T. K. (1987). Pure and Applied Chemistry, 59(2), 257–268.CrossRefGoogle Scholar
  12. 12.
    Mandels, M., & Weber, J. (1969). Advances in Chemistry Series, 95, 391–414.CrossRefGoogle Scholar
  13. 13.
    Derringer, G., & Suich, R. (1980). Journal of Quality Technology, 12, 214–219.Google Scholar
  14. 14.
    Reyes, J., Peralta-Zamora, P., & Duran, N. (1998). Química Nova, 21(2), 140–143.CrossRefGoogle Scholar
  15. 15.
    Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83(1), 1–11.CrossRefGoogle Scholar
  16. 16.
    Jorgensen, H., & Olsson, L. (2006). Enzyme and Microbial Technology, 38, 381–390.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Roberto Nobuyuki Maeda
    • 1
  • Mariana Mello Pereira da Silva
    • 1
  • Lídia Maria Melo Santa Anna
    • 1
  • Nei PereiraJr.
    • 1
  1. 1.Center of Technology, School of Chemistry, Laboratories of Bioprocess DevelopmentFederal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations