Advertisement

Applied Biochemistry and Biotechnology

, Volume 162, Issue 4, pp 1039–1051 | Cite as

Antimicrobial Lipids from the Hemolymph of Brachyuran Crabs

  • Samuthirapandian RavichandranEmail author
  • Solimabi Wahidulla
  • Lisette D’Souza
  • Ganapathy Rameshkumar
Article

Abstract

The potential of marine crabs as a source of biologically active products is largely unexplored. In the present study, antimicrobial activity of the hemolymph (plasma) and hemocytes (plasma cells) of six brachyuran crabs was investigated against 16 pathogenic strains. Among the 16 strains tested maximum zone of inhibition was recorded in the hemolymph of Hyas araneus against Shigella flexineri. Interestingly Staphylococcus aureus and Salmonella typhi were susceptible to all the hemolymph and hemocytes samples. Likewise, the highest zone of inhibition was exhibited by both hemolymph and hemocytes samples against Vibrio cholerae. On the basis of TLC, 1HNMR, and 13CNMR it may be concluded that the antimicrobial activity in the hemolymph extract is due to the presence of lipids. This observation is further supported by the ESI-MS of the methanolic extract of hemolymph of H. araneus. ESI-MS shows cluster of peaks in the region m/z 445 to m/z 491 due to lysoglycerolipids/glycerides and cluster of signals between m/z 216 and 246, due to fatty acids/esters present in the sample.

Keywords

Crab Hemolymph Lipid Antimicrobial TLC ESI-MS 

Abbreviations

TLC

Thin layer chromatography

1H NMR

Proton nuclear magnetic resonance

13CNMR

Carbon 13 nuclear magnetic resonance

m/z

Mass-to-charge

ESI-MS

Electrospray ionization mass spectrometry

mm

Millimeter

cm

Centimeter

MS/MS

Tandem mass spectrometry

NaCl

Sodium chloride

pH

Hydrogen ion concentration

w/v

Weight/volume

V/V

Volume of the substance

μl

Microliter

μg

Microgram

FTIR

Fourier-transform infrared spectroscopy

MeOH

Methanol

H2O

Water

TFA

Trifluoro acetic acid

CID

Collision-induced dissociation

TOF

Time-of-flight

V

Volt

PDB

Potato dextrose broth

SDB

Sabaraud dextrose broth

Notes

Acknowledgments

The authors are grateful to Dr. S R Shetye, Director N.I.O. and Prof. T. Balasubramanian, Director CAS, for the facilities and constant encouragement. Dr. S Ravichandran is thankful to the Indian National Science Academy for the financial support through INSA Fellowship. Dr. Solimabi Wahidulla is thankful to Council of Scientific and Industrial Research (CSIR) for the award of Emeritus Scientist.

References

  1. 1.
    Thormar, H., & Hilmarsson, H. (2007). Chemistry and Physics of Lipids, 150, 1–11.CrossRefGoogle Scholar
  2. 2.
    Miyata, T., Tokunaga, F., Yoneya, T., Yoshikawa, K., Iwanaga, S., Niwa, M., et al. (1989). Journal of Biochemistry, 106, 663–668.Google Scholar
  3. 3.
    Kabara, J. J. (1978). Fatty acids and derivatives as antimicrobial agents review. In J. J. Kabara (Ed.), Symposium on the pharmacological effect of lipids (pp. 1–14). Champaign, IL, U.S.A: The American Oil Chemists Society.Google Scholar
  4. 4.
    Sands, J. A., Auperin, D. D., Landin, P. D., Reinhardt, A., & Cadden, S. P. (1978). Antiviral effects of fatty acids and derivatives: lipid-containing bacteriophages as a model system. In J. J. Kabara (Ed.), Symposium on the pharmacological effect of lipid (pp. 75–95). The American Oil Chemists_Society: Champaign, IL, USA.Google Scholar
  5. 5.
    Snipes, W., & Keith, A. (1978). Hydrophobic alcohols and di-tert-butyl phenols as antiviral agents. In J. J. Kabara (Ed.), Symposium on the pharmacological effect of lipid (pp. 63–73). Champaign, IL, U.S.A: The American Oil Chemists I Society.Google Scholar
  6. 6.
    Anon (2002) Undecylenic Acid. Monograph Altern Med Rev, 7, 68–70.Google Scholar
  7. 7.
    Kongtawelert, P. (1998). Molecular marine biology and biotechnology, 7, 280–286.Google Scholar
  8. 8.
    Haug, A., Høstmark, A. T., & Harstad, O. M. (2007). Lipids Health Dis, 6, 25.CrossRefGoogle Scholar
  9. 9.
    Chisholm, J. R. S., & Smith, V. J. (1995). Comparative Biochemistry and Physiology, 110, 39–45.CrossRefGoogle Scholar
  10. 10.
    Schnapp, D., Kemp, G. D., & Smith, V. J. (1996). European Journal of Biochemistry, 240, 532–539.CrossRefGoogle Scholar
  11. 11.
    Haug, T., Kjuul, A., Stensvag, K., Sandsdalen, E., & Styrvold, O. (2002). Fish & shellfish immunology, 12, 371–385.CrossRefGoogle Scholar
  12. 12.
    Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1996). American journal of clinical pathology, 45, 493–496.Google Scholar
  13. 13.
    Blair, I. A. (1990). Methods in Enzymology, 187, 13–23.CrossRefGoogle Scholar
  14. 14.
    Waugh, R. J., & Murphy, R. C. (1996). Journal of the American Society for Mass Spectrometry, 7, 490–499.CrossRefGoogle Scholar
  15. 15.
    Rinehart, K. L., Shaw, P. D., Shield, L. S., Gloer, J. B., Harbour, G. C., Koker, M. E. S., et al. (1981). Pure and applied chemistry, 53, 795–817.CrossRefGoogle Scholar
  16. 16.
    Ravichandran, S., & Rameshkumar, G. (2006). Seshaiyana, 14, 12–15.Google Scholar
  17. 17.
    Ravichandran, S., Kathiresan, K., & Balaram, H. (2007). Biotech Mole Biol Reviews, 2, 33–38.Google Scholar
  18. 18.
    Veeruraj, A., Ravichandran, S., & Rameshkumar, G. (2008). Trends in Appl Sci Res, 3, 174–181.CrossRefGoogle Scholar
  19. 19.
    Veeruraj, A., Ravichandran, S., & Rameshkumar, G. (2008b). Aqua Biol Aqua, pp. 46–57.Google Scholar
  20. 20.
    Rameshkumar, G., Ravichandran, S., Kaliyavarathan, G., & Ajithkumar, T. T. (2009). World J Fish & Marine Sci, 1, 74–79.Google Scholar
  21. 21.
    Rameshkumar, G., Ravichandran, S., & Aravindhan, T. (2009). Middle East J Sci Res, 4, 40–43.Google Scholar
  22. 22.
    Sperstad, S. V., Haug, T., Paulsen, V., Rode, T. M., Strandskog, G., Solem, S. T., et al. (2009). Developmental and Comparative Immunology, 33, 583–591.CrossRefGoogle Scholar
  23. 23.
    Stensvag, K., Sperstad, S. V., Rekdal, O., Indrevoll, B., & Styrvold, O. B. (2008). Developmental and Comparative Immunology, 32, 275–285.CrossRefGoogle Scholar
  24. 24.
    Kabara, J. J., Swieczkowski, D. M., Conley, A. J., & Truant, J. P. (1972). Antimicrobial Agents and Chemotherapy, 2, 23–28.Google Scholar
  25. 25.
    Conley, A. J., & Kabara, J. J. (1972). Antimicrobial Agents and Chemotherapy, 4, 501–506.Google Scholar
  26. 26.
    Kabara, J. J. (1975). Cosm Perfum, 90, 21–25.Google Scholar
  27. 27.
    Bergsson, G., Arnfinnsson, J., Steingrimsson, O., & Thormar, H. (2001). APMIS, 109, 670–678.CrossRefGoogle Scholar
  28. 28.
    Bergsson, G., Arnfinnsson, J., Steingrimsson, O., & Thormar, H. (2001). Antimicrobial Agents and Chemotherapy, 45, 3209–3212.CrossRefGoogle Scholar
  29. 29.
    Frentzen, M., Weier, D., & Feussner, I. (2003). European Journal of Lipid Science and Technology, 105, 784–792.CrossRefGoogle Scholar
  30. 30.
    Bergsson, G., Steingrimsson, O., & Thormar, H. (2002). J Antimicrob Agents, 20, 258–262.CrossRefGoogle Scholar
  31. 31.
    Thormar, H., Hilmarsson, H., & Bergsson, G. (2006). Applied and Environmental Microbiology, 72, 522–526.CrossRefGoogle Scholar
  32. 32.
    Al-Fadhli, Ammar, Wahidulla, Solimabi, & D’Souza, Lisette. (2006). Glycobiology, 16, 902–915.CrossRefGoogle Scholar
  33. 33.
    Fielding, R. M., & Lasic, D. D. (1999). Expert Opinion in Therapeutic Patent, 9, 1679–1688.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Samuthirapandian Ravichandran
    • 1
    Email author
  • Solimabi Wahidulla
    • 2
  • Lisette D’Souza
    • 2
  • Ganapathy Rameshkumar
    • 1
  1. 1.Centre of Advanced Study in Marine BiologyAnnamalai UniversityParangipettaiIndia
  2. 2.National Institute of OceanographyCouncil of Industrial and Scientific ResearchGoaIndia

Personalised recommendations