Applied Biochemistry and Biotechnology

, Volume 161, Issue 1–8, pp 333–346 | Cite as

Screening and Production Study of Microbial Xylanase Producers from Brazilian Cerrado

  • Heloiza Ferreira Alves-Prado
  • Fabiana Carina Pavezzi
  • Rodrigo Simões Ribeiro Leite
  • Valéria Maia de Oliveira
  • Lara Durães Sette
  • Roberto DaSilva


Hemicelluloses are polysaccharides of low molecular weight containing 100 to 200 glycosidic residues. In plants, the xylans or the hemicelluloses are situated between the lignin and the collection of cellulose fibers underneath. The xylan is the most common hemicellulosic polysaccharide in cell walls of land plants, comprising a backbone of xylose residues linked by β-1,4-glycosidic bonds. So, xylanolytic enzymes from microorganism have attracted a great deal of attention in the last decade, particularly because of their biotechnological characteristics in various industrial processes, related to food, feed, ethanol, pulp, and paper industries. A microbial screening of xylanase producer was carried out in Brazilian Cerrado area in Selviria city, Mato Grosso do Sul State, Brazil. About 50 bacterial strains and 15 fungal strains were isolated from soil sample at 35 °C. Between these isolated microorganisms, a bacterium Lysinibacillus sp. and a fungus Neosartorya spinosa as good xylanase producers were identified. Based on identification processes, Lysinibacillus sp. is a new species and the xylanase production by this bacterial genus was not reported yet. Similarly, it has not reported about xylanase production from N. spinosa. The bacterial strain P5B1 identified as Lysinibacillus sp. was cultivated on submerged fermentation using as substrate xylan, wheat bran, corn straw, corncob, and sugar cane bagasse. Corn straw and wheat bran show a good xylanase activity after 72 h of fermentation. A fungus identified as N. spinosa (strain P2D16) was cultivated on solid-state fermentation using as substrate source wheat bran, wheat bran plus sawdust, corn straw, corncob, cassava bran, and sugar cane bagasse. Wheat bran and corncobs show the better xylanase production after 72 h of fermentation. Both crude xylanases were characterized and a bacterial xylanase shows optimum pH for enzyme activity at 6.0, whereas a fungal xylanase has optimum pH at 5.0–5.5. They were stable in the pH range 5.0–10.0 and 5.5–8.5 for bacterial and fungal xylanase, respectively. The optimum temperatures were 55C and 60 °C for bacterial and fungal xylanase, respectively, and they were thermally stable up to 50 °C.


Microbial enzyme Xylanase Brazilian cerrado Lysinibacillus sp. Neosartorya spinosa 



The authors are highly thankful to the Fundação para o Desenvolvimento da UNESP (Fundunesp) for providing financial support for this research.


  1. 1.
    Sánches, C. (2009). Biotechnology Advances, 27, 185–194.CrossRefGoogle Scholar
  2. 2.
    Pérez, J., Muñoz-Dorado, J., De-La-Rubi, T., & Martinez, J. (2002). International Microbiology, 5, 53–63.CrossRefGoogle Scholar
  3. 3.
    Jeffries, T. W. (1994). Biodegradetion of liginin and hemicelluloses. In C. Ratledge (Ed.), Biochemistry of microbial degradation (pp. 233–277). Dodrecht: Kluwer.Google Scholar
  4. 4.
    Pandey, A., Soccol, C. R., & Mitchell, D. (2000). Process Biochemistry, 35, 1153–1169.CrossRefGoogle Scholar
  5. 5.
    Pandey, A., Soccol, C. R., Nigam, P., & Soccol, V. T. (2000). Bioresource Technology, 74, 69–80.CrossRefGoogle Scholar
  6. 6.
    Rajaram, S., & Varma, A. (1990). Applied Microbiology and Biotechnology, 34, 141–144.CrossRefGoogle Scholar
  7. 7.
    Ferreira-Filho, E. X. (2004). in Enzimas como agentes Biológicos (pp. 137–148). Ribeirão Preto: Legis Summa.Google Scholar
  8. 8.
    Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Applied Microbiology and Biotechnology, 56, 326–338.CrossRefGoogle Scholar
  9. 9.
    Da Silva, R., Lago, E. S., Merheb, C. W., Macchione, M. M., Park, Y. K., & Gomes, E. (2005). Brazilian Journal of Microbiology, 36, 235–241.Google Scholar
  10. 10.
    Polizeli, M. L. T. M., Rizzatti, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A., & Amorim, D. S. (2005). Applied Microbiology and Biotechnology, 67, 577–591.CrossRefGoogle Scholar
  11. 11.
    Dhillon, A., Gupta, J. K., Jauhari, B. M., & Khanna, S. A. (2000). Bioresource Technology, 73, 273–277.CrossRefGoogle Scholar
  12. 12.
    Rani, D. S., & Nand, K. (2000). Process Biochemistry, 36, 355–362.CrossRefGoogle Scholar
  13. 13.
    Shah, A. R., & Madamwar, D. (2005). Process Biochemistry, 40, 1763–1771.CrossRefGoogle Scholar
  14. 14.
    Liu, W., Zhu, W., Lu, Y., Kong, J., & Ma, G. (1998). Process Biochemistry, 33, 331–336.CrossRefGoogle Scholar
  15. 15.
    Li, Y., Liu, Z., Cui, F., Ping, L., Qiu, C., Li, G., et al. (2009). Applied Biochemistry and Biotechnology, 157, 36–49.CrossRefGoogle Scholar
  16. 16.
    Latif, F., Asgher, M., Saleem, R., Akrem, A., & Legge, R. L. (2006). World Journal of Microbiology and Biotechnology, 22, 45–50.CrossRefGoogle Scholar
  17. 17.
    Kadowaki, M. K., Souza, C. G. M., Simão, R. C. G., & Peralta, R. M. (1997). Applied Biochemistry and Biotechnology, 66, 97–106.CrossRefGoogle Scholar
  18. 18.
    Milagres, A. M. F., Santos, E., Piovan, T., & Roberto, I. C. (2004). Process Biochemistry, 39, 1387–1391.CrossRefGoogle Scholar
  19. 19.
    Rezende, M. I., Barbosa, A. M., Vasconcelos, A. F. D., & Endo, A. S. (2002). Brazilian Journal of Microbiology, 33, 67–72.CrossRefGoogle Scholar
  20. 20.
    Virupakshi, S., Babu, K. G., Gaikwad, S. R., & Naik, G. R. (2005). Process Biochemistry, 40, 431–435.CrossRefGoogle Scholar
  21. 21.
    Damiano, V. B., Ward, R., Gomes, E., Alves-Prado, H. F., & DaSilva, R. (2006). Applied Biochemistry and Biotechnology, 129–132, 289–302.CrossRefGoogle Scholar
  22. 22.
    Da Silva, M., Passarini, M. R. Z., Bonugli, R. C., & Sette, L. D. (2008). Environmental Technology, 29, 1331–1339.CrossRefGoogle Scholar
  23. 23.
    Pitcher, D. G., Saunders, N. A., & Owen, R. J. (1989). Letters in Applied Microbiology, 8, 151–156.CrossRefGoogle Scholar
  24. 24.
    White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). in PCR Protocols: a Guide to Methods and Applications (pp. 315–322). New York: Academic Press, Inc.Google Scholar
  25. 25.
    Lane, D. J. (1991). Nucleic Acid Techniques in Bacterial Systematics (pp. 115–175). Chinchester: Willey.Google Scholar
  26. 26.
    Heuer, H., Krsek, M., Baker, P., Smalla, K., & Wellington, E. M. H. (1997). Applied Environmental Microbiology, 63, 3233–3241.Google Scholar
  27. 27.
    Sette, L. D., Passarini, M. R. Z., Delamerlina, C., Salati, F., & Duarte, M. C. T. (2006). World Journal of Microbiology and Biotechnology, 22, 1185–1195.CrossRefGoogle Scholar
  28. 28.
    Vasconcellos, S. P., Crespim, E., Cruz, G. F., Simioni, K. C. M., Santos Neto, E. V., Marsaioli, A. J., et al. (2009). Organic Geochemistry, 40, 574–588.CrossRefGoogle Scholar
  29. 29.
    Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). Nucleic Acids Research, 24, 4876–4882.CrossRefGoogle Scholar
  30. 30.
    Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). Molecular Biology and Evolution, 24, 1596–1599.CrossRefGoogle Scholar
  31. 31.
    Kimura, M. (1980). Journal of Molecular Evolution, 16, 111–120.CrossRefGoogle Scholar
  32. 32.
    Saitou, N., & Nei, M. (1987). Mol Biol Evol, 4, 406–425.Google Scholar
  33. 33.
    Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  34. 34.
    Hartree, E. F. (1972). Analytical Biochemistry, 48, 422–427.CrossRefGoogle Scholar
  35. 35.
    Klich, M. A., & Pitt, J. I. (1988). A laboratory guide to common Aspergillus species and their teleomorphs. North Ryde, NSW, Sydney: CSIRO Division of Food Research.Google Scholar
  36. 36.
    Pitt, J. I., & Hocking, A. D. (1997). Fungi and food spoilage (2nd ed.). Sydney: Division of Food Research.Google Scholar
  37. 37.
    Bailey, J. E., & Ollis, D. F. (1986). Biochemical engineering fundamentals (2nd ed.). New York: McGraw Hill.Google Scholar
  38. 38.
    Damaso, M. C. T., Andrade, C. M. M. C., & Pereira, N., Jr. (2000). Applied Biochemistry and Biotechnology, 84, 821–834.CrossRefGoogle Scholar
  39. 39.
    Soccol, C. R., & Vandenberghe, L. P. S. (2003). Biochemical Engineering Journal, 13, 205–218.CrossRefGoogle Scholar
  40. 40.
    Bandivadekar, K. R., & Deshpande, V. V. (1994). Biotechnology Letters, 16, 179–182.CrossRefGoogle Scholar
  41. 41.
    Badhana, A. K., Chadhaa, B. S., Soniaa, K. G., Sainia, H. S., & Bhatb, M. K. (2004). Enzyme and Microbial Technology, 35, 460–466.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Heloiza Ferreira Alves-Prado
    • 1
  • Fabiana Carina Pavezzi
    • 2
    • 3
  • Rodrigo Simões Ribeiro Leite
    • 4
  • Valéria Maia de Oliveira
    • 5
  • Lara Durães Sette
    • 5
  • Roberto DaSilva
    • 2
  1. 1.FE—Faculdade de Engenharia, DFTASE—Departamento de Fitotecnia, Tecnologia de Alimentos e Sócio EconomiaUNESP—São Paulo State UniversityIlha SolteiraBrazil
  2. 2.LBMA—Laboratório de Bioquímica e Microbiologia AplicadaUNESP—São Paulo State UniversitySão José do Rio PretoBrazil
  3. 3.Instituto de BiociênciasUNESP—São Paulo State UniversityRio ClaroBrazil
  4. 4.FCBA—Faculdade de Ciências Biológicas e AmbientaisUFGD—Federal University of Grande DouradosDouradosBrazil
  5. 5.DRM-CPQBA, CBMAI—Coleção Brasileira de Microrganismos de Ambiente e IndústriaUNICAMP—University of CampinasPaulíniaBrazil

Personalised recommendations