Advertisement

Applied Biochemistry and Biotechnology

, Volume 161, Issue 1–8, pp 93–105 | Cite as

Ethanol Production from Sugarcane Bagasse by Zymomonas mobilis Using Simultaneous Saccharification and Fermentation (SSF) Process

  • Danielle da Silveira dos Santos
  • Anna Carolina Camelo
  • Kelly Cristina Pedro Rodrigues
  • Luís Cláudio Carlos
  • Nei PereiraJr.
Article

Abstract

Considerable efforts have been made to utilize agricultural and forest residues as biomass feedstock for the production of second-generation bioethanol as an alternative fuel. Fermentation utilizing strains of Zymomonas mobilis and the use of simultaneous saccharification and fermentation (SSF) process has been proposed. Statistical experimental design was used to optimize the conditions of SSF, evaluating solid content, enzymatic load, and cell concentration. The optimum conditions were found to be solid content (30%), enzymatic load (25 filter paper units/g), and cell concentration (4 g/L), resulting in a maximum ethanol concentration of 60 g/L and a volumetric productivity of 1.5 g L−1 h−1.

Keywords

Lignocellulosics Sugarcane SSF Bioethanol Z. mobilis 

Notes

Acknowledgments

The authors are grateful to the Brazilian Council for Research (CNPq), the Rio de Janeiro Foundation for Science and Technology (FAPERJ) and the Brazilian Oil Company (PETROBRAS) for scholarship and other financial supports.

References

  1. 1.
    Tavares, P.C.C. (2009). O bagaço de cana como alternativa energética. http://www.portalpch.com.br. Accessed 4 April 2009.
  2. 2.
    Cazetta, M. L., Celligoi, M. A. P. C., Buzato, J. B., & Scarmino, I. (2007). Bioresource Technology, 98, 2824–2838.CrossRefGoogle Scholar
  3. 3.
    Santos, C., & Góes, F. (2007). Oxiteno e Dow apostam no conceito de biorrefinarias. UNICAMP NA MÍDIA 2007. http://www.unicamp.br/unicamp/canal_aberto/clipping/maio2007/clipping070521_valoreconomico.html. Accessed 23 April 2008.
  4. 4.
    Mohagheghi, A., Dowe, N., Schell, D., Chou, Y., Eddy, C., & Zhang, M. (2004). Biotechnology Letters, 26, 321–25.CrossRefGoogle Scholar
  5. 5.
    Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., & Picataggio, S. (1995). Science, 267, 240–243.CrossRefGoogle Scholar
  6. 6.
    Pereira Jr., N., Lima, M. A. G. A., Lopes, C. E., Palha, M. A. P. F., (2002). Electronic Journal of Biotechnology (53). ISSN: 0717-3458.Google Scholar
  7. 7.
    Swings, J., & DeLey, J. (1977). Bacteriological Reviews, Baltimore, 41, 1–46.Google Scholar
  8. 8.
    Doelle, H. W., Kirk, L., Crittenden, R., Toh, H., & Doelle, M. (1993). Critical Reviews in Biotechnology, 13, 57–98.CrossRefGoogle Scholar
  9. 9.
    Rogers, P. L., Lee, K. J., Skotinich, M. L., & Tribe, D. E. (1982). Advances in Biochemical Engineering, 23, 27–84.Google Scholar
  10. 10.
    Betancur, G. V. (2005). MSc thesis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ.Google Scholar
  11. 11.
    Vasques, M. P. (2007). DSc thesis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ.Google Scholar
  12. 12.
    Ghose, T. K. (1987). Pure & Applied Chemistry, 59, 257–268.CrossRefGoogle Scholar
  13. 13.
    Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experimenters. New York: Wiley.Google Scholar
  14. 14.
    Banik, R. M., Santhiagu, A., & Upadhyay, S. N. (2007). Bioresource Technology, 98, 792–797.CrossRefGoogle Scholar
  15. 15.
    Kim, J. K., Oh, B. R., Shin, H. J., Eom, C. Y., & Kim, S. W. (2008). Process Biochemistry, 43, 1308–1312.CrossRefGoogle Scholar
  16. 16.
    Bandaru, V. R., Somalanka, S. R., Mendu, D. R., & Madicherla, N. R. (2006). Enzyme and Microbial Technology, 38, 209–214.CrossRefGoogle Scholar
  17. 17.
    Golias, H., Dumsday, G. J., Stanley, G. A., & Pamment, N. B. (2002). Journal of Biotechnology, 96, 155–168.CrossRefGoogle Scholar
  18. 18.
    Yanase, H., Nozaki, K., & Okamoto, K. (2005). Biotechnology Letters, 27, 259–263.CrossRefGoogle Scholar
  19. 19.
    Rodrigues, E., & Callieri, D. A. S. (1986). Biotechnology Letters, 8, 745–748.CrossRefGoogle Scholar
  20. 20.
    Lee, G. M., Kim, C. H., Lee, K. J., Zainal Abidin Mohd, Y., Han, M. H., & Rhee, S. K. (1986). J Ferment Technol, 64, 293–297.CrossRefGoogle Scholar
  21. 21.
    Patle, S., & Lal, B. (2007). Biotechnology Letters, 29(12), 1839–1843. ISSN 0141-5492 (Print) 1573-6776 (Online).CrossRefGoogle Scholar
  22. 22.
    Park, S. C., Kademi, A., & Baratti, J. C. (1993). Biotechnology Letters, 15, 1179–1184.CrossRefGoogle Scholar
  23. 23.
    Lawford, H. G., Rousseau, J. D., & Mc Millan, J. D. (1997). Applied Biochemistry and Biotechnology, 63–65, 269–286.CrossRefGoogle Scholar
  24. 24.
    Eklund, R., & Zacchi, G. (1995). Enzyme and Microbial Technology, 17(3), 255–259.CrossRefGoogle Scholar
  25. 25.
    Ma, H., Wang, Q., Qian, D., Gong, L., & Zang, W. (2009). Renewable Energy, 34, 1466–1470.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Danielle da Silveira dos Santos
    • 1
  • Anna Carolina Camelo
    • 1
  • Kelly Cristina Pedro Rodrigues
    • 1
  • Luís Cláudio Carlos
    • 1
  • Nei PereiraJr.
    • 1
  1. 1.Laboratories of Bioprocess DevelopmentFederal University of Rio de Janeiro—Center of Technology—School of ChemistryRio de JaneiroBrazil

Personalised recommendations