Applied Biochemistry and Biotechnology

, Volume 162, Issue 4, pp 927–934 | Cite as

Enzymatic Synthesis of Semiconductor Polymers by Chloroperoxidase of Caldariomyces fumago

  • Adriana M. Longoria
  • Hailin Hu
  • Rafael Vazquez-Duhalt
Article

Abstract

Among intrinsically conducting polymers, polyaniline is traditionally synthesized by chemical or electrochemical methods. Recently enzymatic synthesis of conducting polymers has been explored. In this work, polymers were synthesized using chloroperoxidase from Caldariomyces fumago and substituted anilines such as 2,6-dimethylaniline, 2,6-dichloroaniline, and 2,3,5,6-tetrachloroaniline (TCA), in order to promote a linear polymerization. These polymers were doped with (1S)-(+)-10-camphorsulfonic acid, dodecylbenzenesulfonic acid, and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) with molar ratios of 1:0.25 and 1:0.5. Doped polymers showed conductivity corresponding to the semiconductors. TCA polymer doped with AMPSA showed the higher conductivity values. Different AMPSA concentrations have been tested, and the highest conductivity value of 1.6 × 10−2 S•m−1 was obtained for the complex with molar ratio of 1:0.5. This value is similar to those found with other substituted anilines with sulfonic groups. In addition, the enzymatically synthesized polymeric film showed combined transparency and semiconducting properties.

Keywords

Chloroperoxidase Intrinsically conducting polymers Substituted anilines Transparent semiconductor 

References

  1. 1.
    Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., & Heeger, A. J. (1977). Journal of the Chemical Society, Chemical Communications, 16, 578–580.CrossRefGoogle Scholar
  2. 2.
    MacDiarmid, A. G. (2001). Angewandte Chemie International Edition in English, 40, 2581–2590.CrossRefGoogle Scholar
  3. 3.
    Xu, P., Singh, A., & Kaplan, D. L. (2006). Advances in Polymer Science, 194, 69–94.CrossRefGoogle Scholar
  4. 4.
    Samuelson, L. A., Anagnostopoulos, A., Alva, K. S., Kumar, J., & Tripathy, S. K. (1998). Macromolecules, 31, 4376–4378.CrossRefGoogle Scholar
  5. 5.
    Liu, W., Kumar, J., Tripathy, S., Senecal, K. J., & Samuelson, L. J. (1999). American Chemical Society, 121, 71–78.CrossRefGoogle Scholar
  6. 6.
    Liu, W., Kumar, J., Tripathy, S., Senecal, K. J., & Samuelson, L. (1999). Synthetic Metals, 101, 738–741.CrossRefGoogle Scholar
  7. 7.
    Longoria, A., Tinoco, R., & Vázquez-Duhalt, R. (2008). Chemosphere, 72, 485–490.CrossRefGoogle Scholar
  8. 8.
    Hager, L. P., Morris, D. R., Brow, F. S., & Eberwein, H. J. (1996). Biological Chemistry, 241, 1769–1777.Google Scholar
  9. 9.
    Torres, E., Tinoco, R., & Vazquez-Duhalt, R. (1997). Water Science and Technology, 36, 37–44.CrossRefGoogle Scholar
  10. 10.
    Morrison, D. R., & Hager, L. P. (1996). Journal of Biological Chemistry, 241, 1763–1768.Google Scholar
  11. 11.
    Nguyen, M. T., Kasai, P., Miller, J. L., & Diaz, A. F. (1994). Macromolecules, 27, 3625–3631.CrossRefGoogle Scholar
  12. 12.
    Chan, H. S. O., Ho, P. K. H., Ng, S. C., Tan, B. T. G., & Tan, K. L. (1995). Journal of the American Chemical Society, 117, 8517–8523.CrossRefGoogle Scholar
  13. 13.
    Chen, S.-A., & Hwang, G.-W. (1995). Journal of the American Chemical Society, 117, 10055–10062.CrossRefGoogle Scholar
  14. 14.
    Alva, K. S., Kumar, J., Marx, K. A., & Tripathy, S. K. (1997). Macromolecules, 30, 4024–4029.CrossRefGoogle Scholar
  15. 15.
    Nicho, M. E., Trejo, M., García-Valenzuela, A., Saniger, J. M., Palacios, J., & Hu, H. (2001). Sensors and Actuators B, 76, 18–24.CrossRefGoogle Scholar
  16. 16.
    Huitema, H. E. A., Gelinck, G. H., van der Putten, J. B. P. H., Kuijk, K. E., Hart, C. M., Cantatore, E., et al. (2001). Nature, 414, 599.CrossRefGoogle Scholar
  17. 17.
    Kagan, C. R., & Andry, P. (2003). Thin film transistor. New York: Marcel Dekker.CrossRefGoogle Scholar
  18. 18.
    Yang, C.-S., Smith, L. L., Arthur, C. B., & Parsons, G. N. (2000). Journal of Vacuum Science and Technology B, 18, 683–689.CrossRefGoogle Scholar
  19. 19.
    Carey, P. G., Smith, P. M., Theiss, S. D., & Wickboldt, P. (2000). Journal of Vacuum Science and Technology A, 17, 1946–1949.CrossRefGoogle Scholar
  20. 20.
    Choi, H. Y., Kim, S. H., & Jang (2004). Journal of Advanced Materials, 16, 732–736.Google Scholar
  21. 21.
    Shaw, J. M., & Seidler, P. F. (2001). IBM Journal of Research and Development, 45, 3–9.CrossRefGoogle Scholar
  22. 22.
    Dimitrakopoulos, C. D., & Malenfant, P. R. L. (2002). Advanced Materials, 14, 99–117.CrossRefGoogle Scholar
  23. 23.
    Choi, H. Y., Kim, S. H., & Jang, J. (2004). Advanced Materials, 2004(16), 732–736.CrossRefGoogle Scholar
  24. 24.
    Lee, J. H., Kim, S. H., Kim, G. H., Lim, S. C., Lee, H., Jang, J., et al. (2003). Synthetic Metals, 139, 445–451.CrossRefGoogle Scholar
  25. 25.
    Dimitrakopoulos, C. D., & Mascaro, D. J. (2001). IBM Journal of Research and Development, 145, 11–27.CrossRefGoogle Scholar
  26. 26.
    Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., & Hosono, H. (2004). Nature, 432, 488–492.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Adriana M. Longoria
    • 1
  • Hailin Hu
    • 2
  • Rafael Vazquez-Duhalt
    • 1
  1. 1.Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
  2. 2.Centro de Investigación en EnergíaUniversidad Nacional Autónoma de MéxicoTemixcoMexico

Personalised recommendations