Applied Biochemistry and Biotechnology

, Volume 160, Issue 7, pp 2075–2089

Biotransformation of Celecoxib Using Microbial Cultures



Microbial transformation studies can be used as models to simulate mammalian drug metabolism. In the present investigation, biotransformation of celecoxib was studied in microbial cultures. Bacterial, fungal, and yeast cultures were employed in the present study to elucidate the metabolism of celecoxib. The results indicate that a number of microorganisms metabolized celecoxib to various levels to yield eight metabolites, which were identified by high-performance liquid chromatography diode array detection and liquid chromatography tandem mass spectrometry analyses. HPLC analysis of biotransformed products indicated that majority of the metabolites are more polar than the substrate celecoxib. The major metabolite was found to be hydroxymethyl metabolite of celecoxib, while the remaining metabolites were produced by carboxylation, methylation, acetylation, or combination of these reactions. The methyl hydroxylation and further conversion to carboxylic acid was known to occur in metabolism by mammals. The results further support the use of microorganisms for simulating mammalian metabolism of drugs.


Celecoxib Biotransformation HPLC LC–MS/MS Metabolite Microorganisms 


  1. 1.
    Smith, R. V., & Rosazza, J. P. (1975). Journal of Pharmaceutical Sciences, 11, 1737–1759.CrossRefGoogle Scholar
  2. 2.
    Smith, R.V. and Rosazza, J.P. (1982) In J. P. Rosazza (Ed.), Microbial transformations of bioactive compounds (pp.1–42). Boca Raton: CRCGoogle Scholar
  3. 3.
    Smith, R. V., & Rosazza, J. P. (1983). Journal of Natural Products, 46, 79–91.CrossRefGoogle Scholar
  4. 4.
    Clark, A. M., McChesney, J. D., & Hufford, C. D. (1985). Medicinal Research Reviews, 5, 231–253.CrossRefGoogle Scholar
  5. 5.
    Clark, A. M., & Hufford, C. D. (1991). Medicinal Research Reviews, 11, 473–501.CrossRefGoogle Scholar
  6. 6.
    Abourashed, E. A., Clark, A. M., & Hufford, C. D. (1999). Current Medicinal Chemistry, 6, 359–374.Google Scholar
  7. 7.
    Ferris, J. P., MacDonald, L. H., Patrie, M. A., & Martin, M. A. (1976). Archives of Biochemistry and Biophysics, 175, 443–452.CrossRefGoogle Scholar
  8. 8.
    Venisetty, R. K., & Ciddi, V. (2003). Current Pharmaceutical Biotechnology, 4, 123–140.CrossRefGoogle Scholar
  9. 9.
    Paulson, S. K., Hribar, J. D., Liu, N. W. K., Hajdu, E., Bible, R. H., Jr., Piergies, A., et al. (2000). Drug Metabolism and Disposition, 28, 308–314.Google Scholar
  10. 10.
    Paulson, S. K., Zhang, J. Y., Breau, A. P., Hribar, J. D., Liu, N. W. K., Jessen, S. M., et al. (2000). Drug Metabolism and Disposition, 28, 514–521.Google Scholar
  11. 11.
    Backhus, L. M., Petasis, N. A., Uddin, J., Schonthal, A. H., Bart, R. D., Lin, Y., et al. (2005). J. Journal of Thoracic and Cardiovascular Surgery, 130, 1406–1412.CrossRefGoogle Scholar
  12. 12.
    Pyrko, P., Soriano, N., Kardosh, A., Liu, Y. T., Uddin, J., Petasis, N. A., et al. (2006). Mol. Cancer, 5, 19.Google Scholar
  13. 13.
    Abbate, F., Coetzee, A., Casini, A., Ciattini, S., Scozzafava, A., & Supuran, C. T. (2004). Bioorganic & Medicinal Chemistry Letters, 14, 337–341.CrossRefGoogle Scholar
  14. 14.
    Solomon, S.D., McMurray, J.J.V., Pfeffer, M.A., Wittes, J., Fowler, R., Finn, P., Anderson, W.F., Zauber, A., Hawk, E. and Bertagnolli, M. (2005) New Eng. J. Med. 352, 1071–1080.CrossRefGoogle Scholar
  15. 15.
    Venisetty, R. K., Keshetty, S., & Ciddi, V. (2004) Abstract 64th International Pharmaceutical Federation Congress, New Orleans, p. 16.Google Scholar
  16. 16.
    Jayasagar, G., Kumar, M. K., Chandrasekhar, K., Prasad, P. S., & Rao, Y. M. (2002). Pharmazie, 57, 619–621.Google Scholar
  17. 17.
    Cha, C. J., Doerge, D. R., & Cerniglia, C. E. (2001). Applied and Environmental Microbiology, 67, 4358–4360.CrossRefGoogle Scholar
  18. 18.
    Zhang, D., Evans, F. E., Freeman, J. P., Yang, Y., Deck, J., & Cerniglia, C. E. (1996). Chemico-Biological Interactions, 102, 79–92.CrossRefGoogle Scholar
  19. 19.
    Duhart, B. T., Zhang, D., Deck, J., Freeman, J. P., & Cerniglia, C. E. (1999). Xenobiotica, 29, 733–746.CrossRefGoogle Scholar
  20. 20.
    Hansen, E. B., Jr., Heflich, R. H., Korfmacher, W. A., Miller, D. W., & Cerniglia, C. E. (1988). Journal of Pharmaceutical Sciences, 77, 259–264.CrossRefGoogle Scholar
  21. 21.
    Zhang, J. Y., Wang, Y. F., Dudkowski, C., Yang, D., Chang, M., Yuan, J., et al. (2000). Journal of Mass Spectrometry, 35, 1259–1270.CrossRefGoogle Scholar
  22. 22.
    Otten, S., & Rosazza, J. P. (1981). Journal of Natural Products, 44, 562–568.CrossRefGoogle Scholar
  23. 23.
    Sariaslani, F. S., & Rosazza, J. P. (1985). Applied and Environmental Microbiology, 49, 451–452.Google Scholar
  24. 24.
    Hufford, C. D., Lee, I. S., ElSohly, H. N., Chi, H. T., & Baker, K. T. (1990). Pharmaceutical Research, 7, 923–967.CrossRefGoogle Scholar
  25. 25.
    Freitag, D. G., Foster, R. T., Coutts, R. T., Pickard, M. A., & Pasutto, F. M. (1997). Drug Metabolism and Disposition, 25, 685–692.Google Scholar
  26. 26.
    Huang, H., Yang, X., Li, Q., Sun, L., & Zhong, D. (2006). Applied Microbiology and Biotechnology, 72, 486–491.CrossRefGoogle Scholar
  27. 27.
    Penning, T. D., Talley, J. T., Bertenshaw, S. R., Carter, J. S., Collins, P. W., Docter, S., et al. (1997). Journal of Medicinal Chemistry, 40, 1347–1365.CrossRefGoogle Scholar
  28. 28.
    Sandberg, M., Yasar, U., Stromberg, P., Hoog, J. O., & Eliasson, E. (2002). British Journal of Clinical Pharmacology, 54, 423–429.CrossRefGoogle Scholar
  29. 29.
    Schwartz, H., Liebig-Weber, A., Hochstätter, H., & Böttcher, H. (1996). Applied Microbiology and Biotechnology, 44, 731–735.CrossRefGoogle Scholar
  30. 30.
    Mazier, C., Jaouen, M., Sari, M., & Buisson, D. (2004). Bioorganic & Medicinal Chemistry Letters, 14, 5423–5426.CrossRefGoogle Scholar
  31. 31.
    Mountfield, R. J., & Hopper, D. J. (1998). Applied Microbiology and Biotechnology, 50, 379–383.CrossRefGoogle Scholar
  32. 32.
    Rosi, D., Peruzotti, G., Dennis, E. W., Berberian, D. A., Freele, H., Tullar, B. F., et al. (1967). Journal of Medicinal Chemistry, 10, 867–876.CrossRefGoogle Scholar
  33. 33.
    Schwartz, H., Licht, R. E., & Radunz, H. E. (1993). Applied Microbiology and Biotechnology, 40, 382–385.CrossRefGoogle Scholar
  34. 34.
    Zhang, D., Zhang, H., Aranibar, N., Hanson, R., Huang, Y., Cheng, P. T., et al. (2006). Drug Metabolism and Disposition, 34, 267–280.CrossRefGoogle Scholar
  35. 35.
    Clark, A. M., Hufford, C. D., & McChesney, J. D. (1981). Antimicrobial Agents and Chemotherapy, 19, 337–341.Google Scholar
  36. 36.
    Clark, A. M., Evans, S. L., Hufford, C. D., & McChesney, J. D. (1982). Journal of Natural Products, 45, 574–581.CrossRefGoogle Scholar
  37. 37.
    Foster, G. R., Coutts, R. T., Pasutto, F. M., & Mozayani, A. (1988). Life Sciences, 42, 285–292.CrossRefGoogle Scholar
  38. 38.
    Foster, B. C., Wilson, D. L., & McGilveray, I. J. (1989). Xenobiotica, 19, 445–452.CrossRefGoogle Scholar
  39. 39.
    Foster, G. R., Lister, D. L., Zamecnic, J., & Coutts, R. T. (1991). Canadian Journal of Microbiology, 37, 791–795.CrossRefGoogle Scholar
  40. 40.
    Wetzstein, H. G., Stadler, M., Tichy, H. V., Dalhoff, A., & Karl, W. (1999). Applied and Environmental Microbiology, 65, 1556–1563.Google Scholar
  41. 41.
    Parshikov, I. A., Freeman, J. P., Lay, J. O., Jr., Beger, R. D., Williams, A. J., & Sutherland, J. B. (1999). FEMS Microbiology Letters, 177, 131–135.CrossRefGoogle Scholar
  42. 42.
    Pal, M., Madan, M., Padakanti, S., Pattabiraman, V. R., Kalleda, S., Vanguri, A., et al. (2003). Journal of Medicinal Chemistry, 46, 3975–3984.CrossRefGoogle Scholar
  43. 43.
    Dirikolu, L., Lehner, A. F., Jacobs, J., Woods, W. E., Karpiesiuk, W., Harkins, J. D., Carter, W. G., Boyles, J., Hughes, C. G., Bosken, J. M., Holtz, C., Natrass, C., Fisher, M., Tobin, T. (2000) Proceedings of the 13th International Conference of Racing Analysts and Veterinarians, Cambridge, pp. 162–170.Google Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  1. 1.University College of Pharmaceutical SciencesKakatiya UniversityWarangalIndia

Personalised recommendations