Advertisement

Applied Biochemistry and Biotechnology

, Volume 161, Issue 1–8, pp 523–536 | Cite as

Chlorella minutissima—A Promising Fuel Alga for Cultivation in Municipal Wastewaters

  • Ashish Bhatnagar
  • Monica Bhatnagar
  • Senthil Chinnasamy
  • K. C. Das
Article

Abstract

It is imperative to slash the cost of algal oil to less than $50 bbl−1 for successful algal biofuel production. Use of municipal wastewater for algal cultivation could obviate the need for freshwater and the nutrients—N and P. It would also add CO2 through bacterial activity. Chlorella minutissima Fott et Nova dominated the entire phycoflora year around and through each stage of the wastewater treatment at the oxidation pond system of Wazirabad (Delhi) in India. The ability to grow so profusely in such varied and contrasting situations made this alga unique. Besides pollution tolerance, it grew heterotrophically in dark under acidic conditions and as a mixotroph in presence of light over a range of organic C substrates. It could utilize both ammoniacal and nitrate nitrogen, survived anaerobicity, 5% NaCl and −10 bar of osmotic stress. C. minutissima grew at pH 4–11 and raised the pH set initially by 1 to 3 units in 7.5 h. It showed gigantism and largely kept afloat in presence of utilizable organic carbon, while flocculated in mineral medium and on aging. The alga also possessed potential for biofuel production. The studied parameters indicate why C. minutissima was a potential biomass builder in municipal sewage and could be used to determine which other alga(e) may serve the purpose.

Keywords

Anaerobiosis Biofuel Chlorella minutissima Mixotrophy Wastewater 

Notes

Acknowledgment

Authors are grateful to the Dean, PG School, IARI, New Delhi and Biorefining and Carbon Cycling Program of the University of Georgia, Athens, GA, USA for providing financial and academic support for the study.

References

  1. 1.
    Benemann, J., & Oswald, W. (1996). Final report to the US Department of Energy, Grant No. DE-FG22-93PC93204. Pittsburgh Energy Technology Center.Google Scholar
  2. 2.
    Fahm, L. (1980). The waste of nations: The economic utilisation of human waste in agriculture. Montclair, New Jersey, USA: Allenhand, Osmun & Co. Pub, Inc.Google Scholar
  3. 3.
    Niemczynowicz, J. (1997). The water profession and agenda 21. Water Quality International, March/April: 9–11.Google Scholar
  4. 4.
    Bhatnagar, A. (1999). Journal of Environmental Biology, 20, 115–120.Google Scholar
  5. 5.
    Bhatnagar, A., & Bhatnagar, M. (2001). Innovative approaches in microbiology. In D. K. Maheshwari & R. C. Dubey (Eds.), India: Bishen Singh Mahendra Pal Singh, Dehra Dun, pp. 379–403.Google Scholar
  6. 6.
    Droop, M. R. (1967). British Phycological Bulletin, 3(2), 295–297.CrossRefGoogle Scholar
  7. 7.
    Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Bacteriological Reviews, 35, 171–205.Google Scholar
  8. 8.
    Porra, R. J., Thompson, A., & Friedelman, P. E. (1989). Biochimica et Biophysica Acta, 975, 384–394.CrossRefGoogle Scholar
  9. 9.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.Google Scholar
  10. 10.
    Roe, J. H. (1955). Journal of Biological Chemistry, 212, 335–343.Google Scholar
  11. 11.
    Bligh, E. G., & Dyer, W. J. (1959). Canadian Journal of Biochemistry and Physiology, 37, 911–917.Google Scholar
  12. 12.
    Chinnasamy, S., Ramakrishnan, B., Bhatnagar, A., & Das, K. C. (2009). International Journal of Molecular Sciences, 10, 518–532.CrossRefGoogle Scholar
  13. 13.
    Somogyi, M. (1945). Journal of Biological Chemistry, 160, 61–68.Google Scholar
  14. 14.
    Kumar, A., Tabita, F. R., & van Baalen, C. (1982). Archives of Microbiology, 133, 103–109.CrossRefGoogle Scholar
  15. 15.
    Larslandner (1989). Advanced hazard assessment. In R. S. De Santo (Ed.), Springer Ser. Environmental management (pp. 223–225). Berlin, Germany: Springer-Verlag.Google Scholar
  16. 16.
    Cox, H. E., & Pearson, D. (1962). The chemical analysis of foods. New York, USA: Chemical Publishing Co. Inc.Google Scholar
  17. 17.
    Michael, B. E., & Kaufman, M. R. (1973). Plant Physiology, 51, 914–916.CrossRefGoogle Scholar
  18. 18.
    Ogawa, T., & Aiba, S. (1981). Biotechnology and Bioengineering, 23, 1121–1132.CrossRefGoogle Scholar
  19. 19.
    Abeliovich, A., & Weisman, D. (1978). Applied and Environmental Microbiology, 35(1), 32–37.Google Scholar
  20. 20.
    Day, J. D., Edwards, A. P., & Rodgers, G. A. (1991). Bioresource Technology, 38(2–3), 245–249.CrossRefGoogle Scholar
  21. 21.
    Andrade, M. R., & Costa, J. A. V. (2007). Aquaculture, 264(1–4), 130–134.CrossRefGoogle Scholar
  22. 22.
    Jeong, H. J., Du Yoo, Y., Kim, J. S., Kim, T. H., Kim, J. H., Kang, N. S., et al. (2004). Journal of Eukaryotic Microbiology, 51(5), 563–569.CrossRefGoogle Scholar
  23. 23.
    Katechakis, A., Haseneder, T., Kling, R., & Stibor, H. (2005). Limnology and Oceanography, 50(4), 1290–1299.CrossRefGoogle Scholar
  24. 24.
    Tittel, J., Bissinger, V., Gaedke, U., & Kamjunke, N. (2005). Protist, 156(1), 63–75.CrossRefGoogle Scholar
  25. 25.
    Orus, M. L., Marco, E., & Martinez, F. (1991). Bioresource Technology, 38, 179–184.CrossRefGoogle Scholar
  26. 26.
    Kremer, B. P. (1979). Journal of Phycology, 15, 244–247.CrossRefGoogle Scholar
  27. 27.
    Raven, J. A., Johnson, A. M., & MacFarlane, J. J. (1990). Biology of the red algae. In: K. M. Cole and R. G. Sheath (Eds.), New York: Cambridge University Press, pp. 171–185.Google Scholar
  28. 28.
    Martinez, F., & Orus, M. I. (1991). Plant Physiology, 95, 1150–1155.CrossRefGoogle Scholar
  29. 29.
    Turpin, D. H., Elrifi, I. R., Birch, D. G., Weger, H. G., & Holmes, J. J. (1988). Canadian Journal of Botany, 66, 2083–2097.Google Scholar
  30. 30.
    Kamiya, A., & Kowallik, W. (1987). Pl Cell Physiol, 28(4), 611–619.Google Scholar
  31. 31.
    Bagchi, S. N., Chauhan, V. S., & Palod, A. (1990). Current Microbiology, 21(1), 53–57.CrossRefGoogle Scholar
  32. 32.
    Doucha, J., Straka, F., & Lívanský, K. (2005). Journal of Applied Phycology, 17, 403–412.CrossRefGoogle Scholar
  33. 33.
    Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., et al. (2009). Biotechnology and Bioengineering, 102, 100–112.CrossRefGoogle Scholar
  34. 34.
    Ueno, Y., Kurano, N., & Miyachi, S. (1998). Journal of Fermentation and Bioengineering, 86(1), 38–43.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Ashish Bhatnagar
    • 1
  • Monica Bhatnagar
    • 2
  • Senthil Chinnasamy
    • 1
  • K. C. Das
    • 1
  1. 1.Biorefining and Carbon Cycling Program, Department of Biological and Agricultural EngineeringThe University of GeorgiaAthensUSA
  2. 2.Satellite Centre for Microalgal Biodiversity in Arid Zones of Rajasthan, Department of MicrobiologyMaharshi Dayanand Saraswati UniversityAjmerIndia

Personalised recommendations