Applied Biochemistry and Biotechnology

, Volume 162, Issue 1, pp 62–74 | Cite as

Structural Characterization and Comparison of Switchgrass Ball-milled Lignin Before and After Dilute Acid Pretreatment

  • Reichel Samuel
  • Yunqiao Pu
  • Babu Raman
  • Arthur J. Ragauskas
Article

Abstract

To reduce the recalcitrance and enhance enzymatic activity, dilute H2SO4 pretreatment was carried out on Alamo switchgrass (Panicum virgatum). Ball-milled lignin was isolated from switchgrass before and after pretreatment. Its structure was characterized by 13C, HSQC, and 31P NMR spectroscopy. It was confirmed that ball-milled switchgrass lignin is of HGS type with a considerable amount of p-coumarate and felurate esters of lignin. The major ball-milled lignin interunit was the β-O-4 linkage, and a minor amount of phenylcoumarin, resinol, and spirodienone units were also present. As a result of the acid pretreatment, there was 36% decrease of β-O-4 linkage observed. In addition to these changes, the S/G ratio decreases from 0.80 to 0.53.

Keywords

Pretreatment Switchgrass Ball-milled lignin HSQC 13C and 31P NMR spectroscopy 

References

  1. 1.
    Zhang, Y. P., Ding, S. Y., Mielenz, J. R., Cui, J. B., Elander, R. T., Laser, M., et al. (2007). Biotechnology and Bioengineering, 97, 214–221.CrossRefGoogle Scholar
  2. 2.
    Caldeira, K., Jain, A. K., & Hoffert, M. I. (2003). Science, 299, 2052–2054.CrossRefGoogle Scholar
  3. 3.
    Demain, A. L., Newcomb, B., & Wu, J. H. D. (2005). Microbiology and Molecular Biology Reviews, 69, 124–154.CrossRefGoogle Scholar
  4. 4.
    Farrell, A. E., Pelvin, R. J., Turner, B. T., Jones, A. D., O’ Hare, M., & Kammen, D. M. (2006). Science, 311, 506–508.CrossRefGoogle Scholar
  5. 5.
    Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., et al. (2006). Science, 311, 484–489.CrossRefGoogle Scholar
  6. 6.
    Bothast, R. J., & Schlicher, M. A. (2005). Applied Microbiology and Biotechnology, 67, 19–25.CrossRefGoogle Scholar
  7. 7.
    Pu, Y., Zhang, D., Singh, P. M., & Ragauskas, A. J. (2007). Biofules, Bioproducts& Biorefining, 2, 58–73.CrossRefGoogle Scholar
  8. 8.
    MacDonald, T., Yowell, G., & McCormack, M. (2001). US ethanol industry production capacity outlook. California energy commission. Available from http://www.energy.ca.gov/reports/2001-08-29-600-01-017.PDF.
  9. 9.
    Elander, R. T., & Putsche, V. L. (1996). In C. E. Wyman (Ed.), Handbook on bioethanol: Production and utilization (pp. 329–349). Washington, DC: TaylorFrancis.Google Scholar
  10. 10.
    Gray, K. A. (2007). International Sugar Journal, 109, 150–151.Google Scholar
  11. 11.
    Claassen, P. A. M., Sijtsma, L., Stams, A. J. M., De Vries, S. S., & Weusthuis, R. A. (1999). Applied Microbiology and Biotechnology, 52, 741–755.CrossRefGoogle Scholar
  12. 12.
    Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.CrossRefGoogle Scholar
  13. 13.
    Boateng, A. A., Weimer, P. J., Jung, H. G., & Lamb, J. F. S. (2008). Energy Fuels, 22, 2810–2815.CrossRefGoogle Scholar
  14. 14.
    Ding, S. Y., & Himmel, M. E. (2006). Journal of Agricultural and Food Chemistry, 54(3), 597–606.CrossRefGoogle Scholar
  15. 15.
    Sassner, P., Galbe, M., & Zacchi, G. (2008). Biomass and Bioenergy, 32, 422–430.CrossRefGoogle Scholar
  16. 16.
    Saha, B. C., & Cotta, M. A. (2008). Biomass and Bioenergy, 32, 971–977.CrossRefGoogle Scholar
  17. 17.
    Saha, B. C., Iten, L. B., Cotta, M. A., & Wu, Y. V. (2005). Biotechnology Progress, 21, 816–22.CrossRefGoogle Scholar
  18. 18.
    Zhang, Y.-H. P., & Lynd, L. R. (2004). Biotechnology and Bioengineering, 88, 797–824.CrossRefGoogle Scholar
  19. 19.
    Schell, D. J., Farmer, J., Newman, M., & McMillan, J. D. (2003). Applied Biochemistry and Biotechnology, 105–108, 69–84.CrossRefGoogle Scholar
  20. 20.
    Wyman, C. E. (1996). In C. E. Wyman (Ed.), Hand book on bioethanol production and utilization (pp. 1–18). Bristol: Taylor and Francis.Google Scholar
  21. 21.
    Christian, D. C., & Elbersen, H. W. (1998). In N. El Bassam (Ed.), Energy plant species (pp. 257–263). London: James and James.Google Scholar
  22. 22.
    Samson, R. A., & Omielan, J. A. (1992). Switchgrass: a potential biomass energy crop for ethanol production. Windsor, Ontario: The 13th North American prairie conference, pp. 253–258.Google Scholar
  23. 23.
    Jensen, K., Clark, C. D., Ellis, P., English, B., Menard, J., Walsh, M., et al. (2007). Biomass and Bioenergy, 31, 773–781.CrossRefGoogle Scholar
  24. 24.
    Saderson, M. A., Reed, R. L., McLaughlin, S. B., Wullschleger, S. D., Conger, B. V., & Parrish, D. J. (1996). Bioresource Technology, 56, 83–93.CrossRefGoogle Scholar
  25. 25.
    Bals, B., Teachworth, L., Dale, B., & Balan, V. (2007). Applied Biochemistry and Biotechnology, 143, 187–198.CrossRefGoogle Scholar
  26. 26.
    Dence, C. W. (1992). In S. Y. Lin & C. W. Dence (Eds.), Methods in lignin chemistry (pp. 33–40). New York: Springer.Google Scholar
  27. 27.
    Sannigrahi, P., Ragauskas, A. J., & Miller, S. J. (2008). Bioenergy Research, 1(3-4), 205–214.CrossRefGoogle Scholar
  28. 28.
    Holtman, K. M., Chang, H., Jameel, H., & Kadla, J. (2006). Journal of Wood Chemistry and Technology, 26, 21–34.CrossRefGoogle Scholar
  29. 29.
    Ikeda, T., Holtman, K., Kadla, J. F., Chang, H., & Jameel, H. (2002). Journal of Agricultural and Food Chemistry, 50, 129–125.CrossRefGoogle Scholar
  30. 30.
    Bjorkman, A. (1956). Svensk Papperstidn, 59, 477–485.Google Scholar
  31. 31.
    Rencoret, J., Marques, G., Gutierrez, A., Ibarra, D., Li, J., Gellerstedt, G., et al. (2008). Holzforschung, 62(5), 514–526.CrossRefGoogle Scholar
  32. 32.
    Rio, J. C. D., Rencoret, J., Marques, G., Gutierrez, A., Ibarra, D., Santos, J. I., et al. (2008). Journal of Agricultural and Food Chemistry, 56, 9525–9534.CrossRefGoogle Scholar
  33. 33.
    Nasi, C. H., & Sjostrom, E. (1986). Holzforschung, 40, 133–138.Google Scholar
  34. 34.
    Gao, Yang, G., & Jiaxiang, C. (1993). Xianweisu Kexue Yu Jishu, 1(3), 15–25.Google Scholar
  35. 35.
    Granata, A., & Argyropoulos, D. S. (1995). Journal of Agricultural and Food Chemistry, 43, 1538–1544.CrossRefGoogle Scholar
  36. 36.
    Zhang, D., Pu, Y., Chai, X., Naithani, V., Jameel, H., & Ragauskas, A. J. (2006). Holzforschung, 60(2), 123–129.CrossRefGoogle Scholar
  37. 37.
    Pu, Y., & Ragauskas, A. J. (2005). Canadian Journal of Chemistry, 83(12), 2132–2139.CrossRefGoogle Scholar
  38. 38.
    Lundquist, K. (1992). In S. Y. Lin & C. W. Dence (Eds.), Methods in lignin chemistry (pp. 242–249). New York: Springer.Google Scholar
  39. 39.
    Hallac, B., Sannigrahi, P., Pu, Y., Ray, M., Murphy, R. J., & Ragauskas, A. J. (2009). Journal of Agricultural and Food Chemistry, 57(4), 1275–1281.CrossRefGoogle Scholar
  40. 40.
    Capanema, E. A., Balakshin, M. Y., & Kadla, J. F. (2004). Journal of Agricultural and Food Chemistry, 52, 1850–1860.CrossRefGoogle Scholar
  41. 41.
    Capanema, E. A., Balakshin, M. Y., & Kadla, J. F. (2005). Journal of Agricultural and Food Chemistry, 53, 9639–9649.CrossRefGoogle Scholar
  42. 42.
    Holtman, K. M., & Kadla, J. F. (2004). Journal of Agricultural and Food Chemistry, 52(4), 720–726.CrossRefGoogle Scholar
  43. 43.
    Robert, D. (1992). In S. Y. Lin & C. W. Dence (Eds.), Methods in lignin chemistry (pp. 250–273). New York: Springer.Google Scholar
  44. 44.
    Ralph, S. A., Ralph, J., & Landucci, L. L. (2004). NMR database of Lignin and cell wall model compounds. Available at http://ars.usda.gov/Services/docs.htm?docid¼10491.
  45. 45.
    Oliveira, L., Evtuguin, D. V., Cordeiro, N., Silvestre, A. J. D., Silva, A. M. S., & Torres, I. C. (2006). Journal of Agricultural and Food Chemistry, 54(7), 2598–2605.CrossRefGoogle Scholar
  46. 46.
    Higuchi, T., Ito, Y., & Kawamura, I. (1967). Phytochemistry, 6, 875–881.CrossRefGoogle Scholar
  47. 47.
    Scalbert, A., Monties, B., Lallemand, J., Guittet, E., & Rolando, C. (1985). Phytochemistry, 24(6), 1359–1362.CrossRefGoogle Scholar
  48. 48.
    Ralph, J., Marita, J. M., Ralph, S. A., Hatfield, R. D., Lu, F., Ede, R. M., et al. (1999). In D. S. Argyropoulos (Ed.), Advances in lignocellulosics characterization (pp. 55–108). Atlanta: Tappi.Google Scholar
  49. 49.
    Pu, Y., Anderson, S., Lucia, L., & Ragauskas, A. J. (2003). Journal of Pulp and Paper Science, 12, 401–406.Google Scholar
  50. 50.
    Argyropoulos, D. S. (1999). In D. S. Argyropoulos (Ed.), Advances in lignocellulosics characterization (pp. 109–129). Atlanta: Tappi.Google Scholar
  51. 51.
    Pu, Y., Anderson, S., Lucia, L., & Ragauskas, A. J. (2004). Journal of Photochemistry and Photobiology A: Chemistry, 163, 215–221.CrossRefGoogle Scholar
  52. 52.
    Sun, R. C., Sun, X.-F., & Wen, J.-L. (2001). Journal of Agricultural and Food Chemistry, 49, 5322–5330.CrossRefGoogle Scholar
  53. 53.
    Sun, R., Mark, L. J., Banks, W. B., & Xiao, B. (1997). Industrial Crops and Products, 6(2), 97–106.CrossRefGoogle Scholar
  54. 54.
    Li, J., Henriksson, G., & Gellerstedt, G. (2007). Bioresource Technoogy, 98, 3061–3068.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Reichel Samuel
    • 1
    • 4
  • Yunqiao Pu
    • 2
    • 4
  • Babu Raman
    • 3
    • 4
  • Arthur J. Ragauskas
    • 1
    • 2
    • 4
  1. 1.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Institute of Paper Science and TechnologyGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Biosciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  4. 4.BioEnergy Science CenterOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations