Advertisement

Applied Biochemistry and Biotechnology

, Volume 162, Issue 3, pp 625–640 | Cite as

Optimization, Purification, and Characterization of Extracellular Mesophilic Alkaline Cellulase from Sponge-Associated Marinobacter sp. MSI032

  • S. Shanmughapriya
  • G. Seghal Kiran
  • Joseph SelvinEmail author
  • T. Anto Thomas
  • C. Rani
Article

Abstract

Marinobacter sp. (MSI032) isolated from the marine sponge Dendrilla nigra was optimized for the production of extracellular cellulolytic enzyme (CMCase) by submerged fermentation. Initial experiments showed that the culture medium containing 1% maltose as carbon source and 1% peptone and casein as nitrogen source supported maximal enzyme production at 27 °C and at a pH of 9.0. Further optimization carried out showed the maximal enzyme production was supported by the presence of 2% NaCl and 10 mM Zn2+ ions in the production media. The production of enzyme cellulase occurred at 48 h of incubation which proved the importance of this strain for cellulase production in large scale. Further, the enzyme was purified to 12.5-fold with a 37% yield and a specific activity of 2,548.75 U/mg. The purified enzyme displayed maximum activity at mesophilic temperature (27–35 °C) and at a broad pH range with optimal activity at pH 9.0. The purified enzyme was stable even at a higher alkaline pH of 12.0 which is greater than the pH stability that has not been reported in any of the cellulolytic isolates studied so far. Thus, from the present study, it is crucial that, instead of exploring the thermophilic resource that is limited in natural environments, the mesophilic bacteria that occurs commonly in nature can be added up to the database of cellulolytic bacteria. Thus, it is possible that a wide diversity of mesophilic bacteria associated with marine sponges opens up a new doorstep for the degradation of cellulosic waste material for the production of liquid fuels. This is the first report elucidating the prospects of sponge-associated marine bacterium for the production of extracellular alkaline cellulase.

Keywords

Extracellular cellulase Sponge bacteria Marinobacter Marine cellulase Alkaline cellulase 

References

  1. 1.
    Beguin, P., & Aubert, J. P. (1994). FEMS (Federation of European Microbiological Societies) Microbiology Reviews, 13, 25–58.Google Scholar
  2. 2.
    Singh, A., & Hayashi, K. (1995). Advances in Applied Microbiology, 40, 1–44.CrossRefGoogle Scholar
  3. 3.
    Tomme, P., Warren, R. A., & Gilkes, N. R. (1995). Advances in Microbial Physiology, 37, 1–81.CrossRefGoogle Scholar
  4. 4.
    Bailey, M. J., & Poutanen, K. (1987). Applied Microbiology and Biotechnology, 30, 5–10.Google Scholar
  5. 5.
    Bauchop, T., & Mountfort, D. O. (1981). Applied and Environmental Microbiology, 42, 1103–1110.Google Scholar
  6. 6.
    Ito, S. (1997). Extremophiles, 1, 61–66.CrossRefGoogle Scholar
  7. 7.
    Uhlig, H. (1998). Industrial enzymes and their applications (p. 435). New York: Wiley. ISBN 0-471-19660-6.Google Scholar
  8. 8.
    Lee, S. (2005). Encyclopedia of chemical processing. Boca Raton: CRC.CrossRefGoogle Scholar
  9. 9.
    Ito, S., Kobayashi, T., Ara, K., Ozaki, K., Kawai, S., & Hatada, Y. (1998). Extremophiles, 2, 185–190.CrossRefGoogle Scholar
  10. 10.
    Bajpai, P. (1999). Biotechnology Progress, 15, 147–157.CrossRefGoogle Scholar
  11. 11.
    Bhat, M. K. (2000). Biotechnology Advances, 18, 355–383.CrossRefGoogle Scholar
  12. 12.
    Cavaco-Paulo, A. (1998). Carbohydrate Polymers, 37, 273–277.CrossRefGoogle Scholar
  13. 13.
    Paice, M. G., & Jurasek, L. (1987). Journal of Wood Chemistry and Technology, 4, 187–198.CrossRefGoogle Scholar
  14. 14.
    Poutanen, K. (1997). Trends in Food Science and Technology, 8, 300–306.CrossRefGoogle Scholar
  15. 15.
    Shikata, S., Saeki, K., Okoshi, H., Yoshimatsu, T., Ozaki, K., Kawai, S., et al. (1990). Agricultural and Biological Chemistry, 54, 91–96.Google Scholar
  16. 16.
    Bar, D. J. S., Kudo, H., Jakober, K. D., & Cheng, K. J. (1989). Canadian Journal of Botany, 67, 2815–2824.CrossRefGoogle Scholar
  17. 17.
    Christakopoulos, P., Hatzinikolaou, D. G., Fountoukidis, G., Kekos, D., Claeyssens, M., & Macris, B. J. (1999). Archives of Biochemistry and Biophysics, 364, 61–66.CrossRefGoogle Scholar
  18. 18.
    Coughlan, M. P., Hon-nami, K., Konnami, H. L., Ljungdabl, G., & Paulin, J. J. (1985). Biochemical and Biophysical Research Communications, 130, 904–909.CrossRefGoogle Scholar
  19. 19.
    Selvin, J., Soniya, J., Asha, K. R. T., Manjusha, W. A., Sangeetha, V. S., Jayaseema, D. M., et al. (2004). Federation of European Microbiological Societies Microbiology, Ecology, 50, 117–122.Google Scholar
  20. 20.
    Teather, R. M., & Wood, P. J. (1982). Methods in Enzymology, 160, 59–74.Google Scholar
  21. 21.
    Collins, C. H., Lyne, P. M., & Grange, J. M. (1989). Microbiological methods. London: Butterworths.Google Scholar
  22. 22.
    Altschul, S. F., Gise, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Journal of Molecular Biology, l215, 403–410.Google Scholar
  23. 23.
    Altschul, S. F., Thomas, L. M., Alejandro, A. S., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Nucleic Acids Research, 25, 3389–3402.CrossRefGoogle Scholar
  24. 24.
    Hall, T. A. (1999). Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  25. 25.
    Rani, D. S., & Nand, K. (2000). Process Biochemistry, 36, 355–362.CrossRefGoogle Scholar
  26. 26.
    Bernfield, P. (1955). Methods in Enzymology, 1, 149–158.CrossRefGoogle Scholar
  27. 27.
    Miller, G. L. (1959). Analytical Chemistry, 37, 426–428.CrossRefGoogle Scholar
  28. 28.
    Lowry, O. H., Rosebrough, N., Farr, A., & Randall, R. (1951). Journal of Biological Chemistry, 193, 265–275.Google Scholar
  29. 29.
    Laemmli, U. K. (1970). Nature, 227, 680–685.CrossRefGoogle Scholar
  30. 30.
    Coughlan, M. P., & Ljungdahl, L. G. (1988). FEMS symposium no. 43. New York: Academic.Google Scholar
  31. 31.
    Cavedon, K., Susan, T., Leschine, B., & Canale-parola, E. (1990). Journal of Bacteriology, 172, 4222–4230.Google Scholar
  32. 32.
    Saxena, S., Bahadur, J., & Verma, A. (1991). Applied Microbiology and Biotechnology, 34, 668–670.CrossRefGoogle Scholar
  33. 33.
    Harchand, R. K., & Singh, S. (1997). Acta Microbiologica Immunologica Hungarica, 44, 229–239.Google Scholar
  34. 34.
    Ito, S., Shikata, S., Ozaki, K., Kawai, S., Okamoto, K., Inoue, S., et al. (1989). Agricultural and Biological Chemistry, 53, 1275–1281.Google Scholar
  35. 35.
    Singh, N. B., & Sobti, R. C. (2001). J. World Journal of Microbiology & Biotechnology, 17, 761–765.CrossRefGoogle Scholar
  36. 36.
    Fukumori, F., Kudo, T., & Horikoshi, K. (1985). Journal of General Microbiology, 131, 3339–3345.Google Scholar
  37. 37.
    Showale, J. G., & Sadana, J. C. (1978). Canadian Journal of Microbiology, 24, 1204–1216.CrossRefGoogle Scholar
  38. 38.
    Song, F. L., Forsberg, C. W., & Gibbins, L. N. (1985). Applied and Environmental Microbiology, 50, 220–228.Google Scholar
  39. 39.
    Doi, A. H., Park, J. S., Liu, C. C., Malburg, L. M., Tamaru, Y., Ischiishi, A., et al. (1998). Extremophiles, 2, 53–60.CrossRefGoogle Scholar
  40. 40.
    Lewis, S. M., Montgomery, C. M., Garleb, K. A., Berger, L. L., & Fahey, G. C. (1988). Applied and Environmental Microbiology, 54, 1163–1169.Google Scholar
  41. 41.
    Malek, M. A., Chowdhury, N. A., Yousouf, Q. M., & Chaudhury, N. (1988). Enzyme and Microbial Technology, 10, 750–753.CrossRefGoogle Scholar
  42. 42.
    Pfeffer, J. T. (1974). Biotechnology and Bioengineering, 16, 771–787.CrossRefGoogle Scholar
  43. 43.
    Hagerdal, B., Harris, H., & Pye, E. K. (1979). Biotechnology and Bioengineering, 21, 345–355.CrossRefGoogle Scholar
  44. 44.
    Pardo, A. G., & Forchiassin, F. (1998). Revista Argentina de Microbiologia, 30, 20–29.Google Scholar
  45. 45.
    Spreinat, A., & Antranikian, G. (1990). Applied Microbiology and Biotechnology, 33, 511–518.CrossRefGoogle Scholar
  46. 46.
    Hakamada, Y., Endo, K., Takizawa, S., Kobayashi, T., Shirai, T., Yamane, T., et al. (2002). Biochimica et Biophysica Acta, 1570, 174–180.Google Scholar
  47. 47.
    Endo, K., Hakamada, Y., Takizawa, S., & Kubota, H. (2001). Applied Microbiology and Biotechnology, 57, 109–116.CrossRefGoogle Scholar
  48. 48.
    Kim, J. Y., Hur, S. H., & Hong, J. H. (2005). Biotechnology Letters, 27, 313–316.CrossRefGoogle Scholar
  49. 49.
    Hakamada, Y., Koike, K., Yoshimatsu, T., Mori, H., Kobayashi, T., & Ito, S. (1997). Extremophiles, 1, 151–156.CrossRefGoogle Scholar
  50. 50.
    Shanmughapriya, S., Krishnaveni, J., Selvin, J., Gandhimathi, R., Arun Kumar, M., Thangavelu, T., et al. (2008). Bioprocess and Biosystems Engineering, 31, 427–433.CrossRefGoogle Scholar
  51. 51.
    Shanmughapriya, S., Seghal Kiran, G., Selvin, J., Gandhimathi, R., Bastin Baskar, T., Manilal, A., et al. (2008). Biotechnology and Bioprocess Engineering, 14, 67–75.CrossRefGoogle Scholar
  52. 52.
    Seghal Kiran, G., Shanmughapriya, S., Jayalakshmi, J., Selvin, J., Gandhimathi, R., Sivaramakrishnan, S., et al. (2008). Bioprocess and Biosystems Engineering, 31, 483.CrossRefGoogle Scholar
  53. 53.
    Riemann, F., & Helmke, E. (2002). Marine Ecology, 23, 93–113.CrossRefGoogle Scholar
  54. 54.
    Berkenheger, I., & Fischer, U. (2004). International Microbiology, 7, 1139–6709.Google Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • S. Shanmughapriya
    • 1
  • G. Seghal Kiran
    • 2
  • Joseph Selvin
    • 1
    Email author
  • T. Anto Thomas
    • 1
  • C. Rani
    • 1
  1. 1.Department of MicrobiologyBharathidasan UniversityTiruchirappalliIndia
  2. 2.Department of BiotechnologyBharathidasan UniversityTiruchirappalliIndia

Personalised recommendations