Applied Biochemistry and Biotechnology

, Volume 160, Issue 8, pp 2401–2414

α-Amylase: An Ideal Representative of Thermostable Enzymes

Article

Abstract

The conditions prevailing in the industrial applications in which enzymes are used are rather extreme, especially with respect to temperature and pH. Therefore, there is a continuing demand to improve the stability of enzymes and to meet the requirements set by specific applications. In this respect, thermostable enzymes have been proposed to be industrially relevant. In this review, α-amylase, a well-established representative of thermostable enzymes, providing an attractive model for the investigation of the structural basis of thermostability of proteins, has been discussed.

Keywords

α-Amylase Thermostability Structural flexibility Rigidity Unfolding state 

References

  1. 1.
    Mozhaev, V. V. (1993). Trends in Biotechnology, 11, 88–95.CrossRefGoogle Scholar
  2. 2.
    Vihinen, M., & Mantsala, P. (1989). Critical Reviews in Biochemistry and Molecular Biology, 24, 329–418.CrossRefGoogle Scholar
  3. 3.
    Soggard, M., Abe, J., Martineauclaire, M. F., & Svensson, B. (1993). Carbohyd Polym, 21, 137–146.CrossRefGoogle Scholar
  4. 4.
    Svennson, B. (1994). Plant Molecular Biology, 25, 141–157.CrossRefGoogle Scholar
  5. 5.
    Burhan, A., Nisa, U., Gokhan, C., Omer, C., Ashabil, A., & Osman, G. (2003). Process Biochemistry, 38, 1397–1403.CrossRefGoogle Scholar
  6. 6.
    Schwermann, B., Pfau, K., Liliensiek, B., Schleyer, M., Fischer, T., & Bakker, E. P. (1994). European Journal of Biochemistry, 226, 981–991.CrossRefGoogle Scholar
  7. 7.
    Underkofler, L. (1976). Industrial microbiology. New York: McGraw-Hill.Google Scholar
  8. 8.
    Bolton, D. J., Kelly, C. T., & Fogarty, W. M. (1997). Enz Microbiol Technol, 20, 340–343.CrossRefGoogle Scholar
  9. 9.
    Elaassar, S. A., Omar, S. H., Gouda, M. K., Ismail, A. M., & Abdelfattah, A. F. (1992). Applied Microbiology and Biotechnology, 38, 312–314.Google Scholar
  10. 10.
    Viara, N., Elena, P., & Elka, I. (1993). Journal of Biotechnology, 28, 277–289.CrossRefGoogle Scholar
  11. 11.
    Vihinen, M., & Mantsala, P. (1990). Biotechnology and Applied Biochemistry, 12, 427–435.Google Scholar
  12. 12.
    Canganella, F., Andrade, C., & Antranikian, G. (1994). Applied Microbiology and Biotechnology, 42, 239–245.Google Scholar
  13. 13.
    Ratnakhanokchai, K., Kaneko, I., Kamio, Y., & Izaki, K. (1992). Applied and Environmental Microbiology, 58, 2490–2494.Google Scholar
  14. 14.
    Fukusumi, S., Kamizono, A., Horinouchi, S., & Beppu, T. (1988). European Journal of Biochemistry, 174, 15–21.CrossRefGoogle Scholar
  15. 15.
    Tan, T.-C., Mijts, B. N., Swaminathan, K., Patel, B. K. C., & Divne, C. (2008). Journal of Molecular Biology, 378, 852–870.CrossRefGoogle Scholar
  16. 16.
    Burgesscassler, A., & Imam, S. (1991). Current Microbiology, 23, 207–213.CrossRefGoogle Scholar
  17. 17.
    Giraud, E., Gosselin, L., Marin, B., Parada, J. L., & Raimbault, M. (1993). Appl Bacteriol, 75, 276–282.Google Scholar
  18. 18.
    Prieto, J. A., Bort, B. R., Martinez, J., Radezgil, F., Buesa, C., & Sanz, P. (1995). Biochemistry and Cell Biology, 73, 41–49.CrossRefGoogle Scholar
  19. 19.
    Ramakrishna, S., Samir, K., & Chakrabarty, S. (1993). Enz Microbiol Technol, 10, 260–263.Google Scholar
  20. 20.
    Landerman, K., Asada, K., Uemori, T., Mukai, H., Taguchi, Y., Kato, I., et al. (1993). Journal of Biological Chemistry, 268, 24402–24407.Google Scholar
  21. 21.
    Koch, R., Spreinat, K., Lemke, K., & Antranikan, G. (1991). Archives of Microbiology, 155, 572–578.CrossRefGoogle Scholar
  22. 22.
    Niehaus, F., Bertoldo, C., Kahler, M., & Antranikian, G. (1999). Applied Microbiology and Biotechnology, 51, 711–729.CrossRefGoogle Scholar
  23. 23.
    Siquiera, E. M. D., Mizzuta, K., & Giglio, J. R. (1997). Mycological Research, 101, 188–190.CrossRefGoogle Scholar
  24. 24.
    Gomes, I., Gomes, J., & Steiner, W. (2003). Bioresource Technology, 90, 207–214.CrossRefGoogle Scholar
  25. 25.
    Aquino, A. C. M. M., Jorge, J. A., Terenzi, H. F., & Polizeli, M. L. T. M. (2003). Applied Microbiology and Biotechnology, 61, 323–328.Google Scholar
  26. 26.
    Hesse, O., Hansen, G., Hohne, W. E., & Komer, D. (1991). Biomedica Biochimica Acta, 50, 225–232.Google Scholar
  27. 27.
    Estelle, L., Ladrat, C., Ann, G., Georges, B., & Francis, D. (1997). CR Acad Sci, 320, 893–898.Google Scholar
  28. 28.
    Neuner, A., Jannasch, H. W., Belkin, S., & Stetter, K. O. (1990). Archives of Microbiology, 153, 205–207.CrossRefGoogle Scholar
  29. 29.
    Kwak, Y., Akeba, T., & Kudo, T. J. (1998). Ferment Bioeng, 86, 363–367.CrossRefGoogle Scholar
  30. 30.
    Jenssen, B., & Olsen, J. (1992). Enz Microbiol Technol, 14, 112–116.CrossRefGoogle Scholar
  31. 31.
    Liebl, W., Stemplinger, I., & Ruile, P. (1997). Bacteriol, 179, 941–948.Google Scholar
  32. 32.
    Egas, M. C. V., da Costa, M. S., Cowan, D. A., & Pires, E. M. V. (1998). Exothermophiles, 2, 23–32.CrossRefGoogle Scholar
  33. 33.
    Banner, D. W., Bloomer, A. C., Petsko, G. A., Phillipsa, D. C., Pogson, C. I., Wilson, I. A., et al. (1975). Nature, 255, 609–614.CrossRefGoogle Scholar
  34. 34.
    Svensson, B., & Soggard, M. (1991). Biochemical Society Transactions, 20, 34–42.Google Scholar
  35. 35.
    Janecek, S., Svensson, B., & Henrissat, B. (1997). Journal of Molecular Evolution, 45, 322–331.CrossRefGoogle Scholar
  36. 36.
    MacGregor, E. A. (1988). Journal of Protein Chemistry, 7, 399–415.CrossRefGoogle Scholar
  37. 37.
    Nielsen, J. E., & Borchert, T. V. (2000). Biochimica et Biophysica Acta, 1543, 253–274.Google Scholar
  38. 38.
    van der Maarel, M. J. E. C., van der Veen, B., Uitdehaag, J. C. M., Leemhuis, H., & Dijkhuizen, L. (2002). Journal of Biotechnology, 94, 137–155.CrossRefGoogle Scholar
  39. 39.
    Kuriki, T., Hondoh, H., & Matsuura, Y. (2005). Biologia, 60, 13–16.Google Scholar
  40. 40.
    Kim, J.-S., Cha, S.-S., Kim, H.-J., Kim, T.-J., Ha, N.-C., Oh, S.-T., et al. (1999). Journal of Biological Chemistry, 274, 26279–26286.CrossRefGoogle Scholar
  41. 41.
    Koradi, R., Billeter, M., & Wuthrich, K. (1996). Journal of Molecular Graphics, 14, 51–132.CrossRefGoogle Scholar
  42. 42.
    Matsuura, Y., Kusunoki, M., Harada, W., & Kakudo, M. (1984). A J Biochem, 95, 697–702.Google Scholar
  43. 43.
    Feller, G., d'Amico, D., & Gerday, C. (1999). Biochem, 38, 4613–4619.CrossRefGoogle Scholar
  44. 44.
    Fitter, J., Hermann, R., Dencher, N. A., Blume, A., & Hauss, T. (2001). Biochem, 40, 10723–10731.CrossRefGoogle Scholar
  45. 45.
    Brozowski, A. M., Lawson, D. M., Turkenberg, J. P., Bisgaard-Frantzen, H., Svendsen, A., Borchert, T. V., et al. (2000). Biochem, 39, 9099–9107.CrossRefGoogle Scholar
  46. 46.
    Laderman, K. A., Davis, B. R., Krutzsch, H. C., Lewis, M. S., Griko, Y. V., Privalov, P. L., et al. (1993). Journal of Biological Chemistry, 268, 24394–24401.Google Scholar
  47. 47.
    Jorgensen, S., Vorgias, C. E., & Antranikian, G. (1997). Journal of Biological Chemistry, 272, 16335–16342.CrossRefGoogle Scholar
  48. 48.
    Linden, A., Mayans, O., Meyer-Claucke, W., Antranikian, G., & Wilmanns, M. (2003). Journal of Biological Chemistry, 278, 9875–9884.CrossRefGoogle Scholar
  49. 49.
    Machius, M., Wiegand, G., & Huber, R. (1995). Journal of Molecular Biology, 246, 545–559.CrossRefGoogle Scholar
  50. 50.
    Boel, E., Brady, L., Brozozowski, A. M., Derewenda, Z., Dodson, G. G., Jensen, V. J., et al. (1990). Biochem, 29, 6244–6249.CrossRefGoogle Scholar
  51. 51.
    Machius, M., Declerck, N., Huber, R., & Wiegand, G. (1998). Structure, 6, 281–292.CrossRefGoogle Scholar
  52. 52.
    Vallee, B. L., Stein, E. A., Summerwill, W. N., & Fischer, E. H. (1959). Journal of Biological Chemistry, 234, 2901–2905.Google Scholar
  53. 53.
    Hsiu, J., Fischer, E. H., & Stein, E. A. (1964). Biochem, 3, 61–66.CrossRefGoogle Scholar
  54. 54.
    Larson, S. B., Greenwood, A., Cascio, D., Day, J., & McPherson, A. (1994). Journal of Molecular Biology, 235, 1560–1584.CrossRefGoogle Scholar
  55. 55.
    Buisson, G., Duee, E., Haser, R., & Payan, F. (1987). EMBO Journal, 6, 3909–3916.Google Scholar
  56. 56.
    Goyal, N., Gupta, J. K., & Soni, S. K. (2005). Enz Microb Technol, 37, 723–734.CrossRefGoogle Scholar
  57. 57.
    Khajeh, K., Ranjbar, B., Naderi-Manesh, H., Habibi, A. E., & Nemat-Goegani, M. (2001). Biochimica et Biophysica Acta, 1548, 229–237.Google Scholar
  58. 58.
    Declerk, N., Machius, M., Wiegand, G., Huber, R., & Giallardin, C. (2000). Journal of Molecular Biology, 301, 1041–1057.CrossRefGoogle Scholar
  59. 59.
    Lee, S., Mouri, Y., Minoda, M., Oneda, H., & Inouye, K. (2006). Journal of Biochemistry, 139, 1007–1015.CrossRefGoogle Scholar
  60. 60.
    Nonaka, T., Fujihashi, M., Kita, A., Hagihara, H., Ozaki, K., Ito, S., et al. (2003). Journal of Biological Chemistry, 278, 24818–24824.CrossRefGoogle Scholar
  61. 61.
    Koch, R., Zablowski, P., Sprienat, A., & Antranikian, G. (1990). FEMS Microbiology Letters, 71, 21–26.CrossRefGoogle Scholar
  62. 62.
    Shaw, J. F., Lin, F. P., Chen, S. C., & Chen, H. C. (1995). Bot Bull Acad Sin, 36, 195–200.Google Scholar
  63. 63.
    Malhotra, R., Noorvez, S. M., & Satyanarayana, T. (2000). Letters in Applied Microbiology, 31, 378–384.CrossRefGoogle Scholar
  64. 64.
    Levitsky, A., & Steer, M. L. (1974). European Journal of Biochemistry, 41, 171–180.CrossRefGoogle Scholar
  65. 65.
    Feller, G., Bussy, O., Houssier, C., & Gerday, C. (1996). Journal of Biological Chemistry, 271, 23836–23841.CrossRefGoogle Scholar
  66. 66.
    Ramasubbu, N., Paloth, V., Luo, Y., Brayer, G. D., & Levine, M. J. (1996). Acta Cryst, D52, 435–446.Google Scholar
  67. 67.
    Brayer, G. D., Luo, Y., & Withers, S. G. (1995). Protein Science, 4, 1730–1742.CrossRefGoogle Scholar
  68. 68.
    Aghazari, N., Feller, G., Gerday, C., & Haser, R. (1998). Protein Science, 7, 564–572.CrossRefGoogle Scholar
  69. 69.
    Koshland, D. E. (1953). Biological Review, 28, 416–436.Google Scholar
  70. 70.
    Davies, G., Sinnott, M. L., & Withers, S. G. (1998). Comprehensive biological catalysts (pp. 119–208). New York: Academic.Google Scholar
  71. 71.
    Ly, H. D., & Withers, S. G. (1999). Annual Review of Biochemistry, 68, 487–522.CrossRefGoogle Scholar
  72. 72.
    Uitdehaag, J. C. M., Mosi, R., Kalk, K. H., van der Veen, B. A., Dikhuizen, L., Withers, S. G., et al. (1999). Nature Structural Biology, 6, 432–436.CrossRefGoogle Scholar
  73. 73.
    MacGregor, E. A., Janecek, S., & Svennson, B. (2001). Biochimica et Biophysica Acta, 1546, 1–20.Google Scholar
  74. 74.
    Leveque, E., Janecek, S., Haye, B., & Belarbi, A. (2000). Enz Microbiol Technol, 26, 3–14.CrossRefGoogle Scholar
  75. 75.
    Savchenko, A., Vieille, C., & Zeikus, J. G. (2001). Methods in Enzymology, 330, 354–363.CrossRefGoogle Scholar
  76. 76.
    Linden, A., & Wilmanns, M. (2000). ChemBioChem, 45, 231–239.Google Scholar
  77. 77.
    Fontana, A. (1991). Current Opinion in Biotechnology, 2, 551–560.CrossRefGoogle Scholar
  78. 78.
    Ladenstein, R., & Antranikian, G. (1998). Advances in Biochemical Engineering/Biotechnology, 61, 37–85.CrossRefGoogle Scholar
  79. 79.
    Vielle, C., Burdette, D. S., & Zeikus, J. G. (1996). Biotechnology Annual Review, 2, 1–83.CrossRefGoogle Scholar
  80. 80.
    Saito, N. (1973). Archives of Biochemistry and Biophysics, 155, 296–298.CrossRefGoogle Scholar
  81. 81.
    Kobayashi, T., Kamekura, M., Kanlayakrit, W., & Ohnishi, H. (1986). Microbios, 46, 165–171.Google Scholar
  82. 82.
    Prieto, J. A., Bort, B. R., Martinez, J., Randez-Gil, F., Buesa, C., & Sanz, P. (1994). Biochemistry and Cell Biology, 73, 41–49.CrossRefGoogle Scholar
  83. 83.
    Jaenicke, R., Schurig, H., Beaucamp, N., & Ostendorp, R. (1996). Advances in Protein Chemistry, 48, 181–269.CrossRefGoogle Scholar
  84. 84.
    Bao, Q. Y., Tian, W., Li, Z., Xu, Z., et al. (2002). Genome Research, 12, 689–700.CrossRefGoogle Scholar
  85. 85.
    Saunders, N. F., Thomas, T., Curmi, P. M., Mattick, J. S., et al. (2003). Genome Research, 13, 1580–1588.CrossRefGoogle Scholar
  86. 86.
    Szilagyi, A., & Zavodszky, P. (2000). Structure, 8, 493–504.CrossRefGoogle Scholar
  87. 87.
    Paz, A., Mester, D., Baca, I., Nevo, E., et al. (2004). Proceedings of the National Academy of Sciences, 101, 2951–2956.CrossRefGoogle Scholar
  88. 88.
    Vetriani, C., Maeder, D. L., Tolliday, N., Yip, K. S., Stillman, T. J., Britton, K. L., et al. (1998). Proceedings of the National Academy of Sciences of the United States of America, 95, 12300–12305.CrossRefGoogle Scholar
  89. 89.
    Mallick, P., Butz, D. R., Eisenberg, D., & Yeates, T. O. (2002). Proceedings of the National Academy of Sciences, 99, 9679–9684.CrossRefGoogle Scholar
  90. 90.
    Jaenicke, R., & Bohm, G. (1998). Current Opinion in Structural Biology, 8, 738–748.CrossRefGoogle Scholar
  91. 91.
    Russell, R. J. M., Ferguson, J. M. C., Haugh, D. W., Danson, M. J., & Taylor, G. L. (1997). Biochem, 36, 9983–9994.CrossRefGoogle Scholar
  92. 92.
    Schumann, J., Bohm, G., Schumacher, G., Rudolph, R., & Jaenicke, R. (1993). Protein Science, 2, 1612–1620.CrossRefGoogle Scholar
  93. 93.
    Thompson, M. J., & Eisenberg, D. (1999). Journal of Molecular Biology, 290, 595–604.CrossRefGoogle Scholar
  94. 94.
    Haslbeck, M., Franzmann, T., Weinfurtner, D., & Buchner, J. (2005). Nature Structural & Molecular Biology, 12, 842–846.CrossRefGoogle Scholar
  95. 95.
    Das, R., & Gerstein, M. (2000). Functional & Integrative Genomics, 1, 76–88.Google Scholar
  96. 96.
    Tekaia, F., Yeramian, E., & Bernard, D. (2002). Gene, 297, 51–60.CrossRefGoogle Scholar
  97. 97.
    Matthews, B. W., Nicholson, H., & Bechtel, W. J. (1987). Proceedings of the National Academy of Sciences of the United States of America, 84, 6663–6667.CrossRefGoogle Scholar
  98. 98.
    Wigley, D. B., Clarke, A. R., Dunn, C. R., Barstow, D. A., Atkinson, T., Chia, W. N., et al. (1987). Biochimica et Biophysica Acta, 916, 145–148.Google Scholar
  99. 99.
    Zuber, H. (1988). Biophysical Chemistry, 29, 171–179.CrossRefGoogle Scholar
  100. 100.
    Haney, P., Konisky, J., Koretke, K. K., Luthey-Schulten, Z., & Wolynes, P. G. (1997). Proteins, 28, 117–130.CrossRefGoogle Scholar
  101. 101.
    Russell, R. J. M., Ferguson, J. M. C., Haugh, D. W., & Taylor, G. L. (1998). Structure, 6, 351–361.CrossRefGoogle Scholar
  102. 102.
    Watnabe, K., Hata, Y., Kizaki, H., Katsube, Y., & Suzuki, Y. (1997). Journal of Molecular Biology, 269, 142–153.CrossRefGoogle Scholar
  103. 103.
    Bogin, O., Peretz, M., Hacham, Y., Korkhin, Y., Frolow, F., Kalb, A. J., et al. (1998). Protein Science, 7, 1156–1163.CrossRefGoogle Scholar
  104. 104.
    Diao, Y., Ma, D., Wen, Z., Yin, J., Xiang, J., & Li, M. (2008). Amino Acids, 34(1), 111–117.CrossRefGoogle Scholar
  105. 105.
    Scandurra, R., Consalvi, V., Chiraluce, R., Politi, L., & Engel, P. C. (1998). Biochemie, 80, 933–941.CrossRefGoogle Scholar
  106. 106.
    Zhou, X. X., Wang, Y. B., Pan, Y. J., & Li, W. F. (2008). Amino Acids, 34, 25–33.CrossRefGoogle Scholar
  107. 107.
    Zavodszky, P., Kardos, J., Svingor, A., & Petsko, G. A. (1998). Proceedings of the National Academy of Sciences of the United States of America, 95, 7406–7411.CrossRefGoogle Scholar
  108. 108.
    Facchiano, A. M., Colonna, G., & Ragone, R. (1998). Protein Engineering, 11, 753–760.CrossRefGoogle Scholar
  109. 109.
    Daniel, R. M., Cowan, D. A., Morgan, H. W., & Curran, M. P. (1982). Biochemical Journal, 207, 641–644.Google Scholar
  110. 110.
    Jaenicke, R. (1996). Naturwissenschaften, 83, 544–554.CrossRefGoogle Scholar
  111. 111.
    Beadle, B. M., Baase, W. A., Wilson, D. B., Gilkes, N. R., & Shoichet, B. K. (1999). Biochem, 38, 2570–2576.CrossRefGoogle Scholar
  112. 112.
    Yokota, K., Satou, K., & Ohki, S. (2006). Sci Technol Adv Mat, 7, 255–262.CrossRefGoogle Scholar
  113. 113.
    Villiarias, A. M., & Querol, E. (2006). Curr Bioinform, 1, 25–32.CrossRefGoogle Scholar
  114. 114.
    Byler, D. M., & Susi, H. (1986). Biopolymers, 25, 469–487.CrossRefGoogle Scholar
  115. 115.
    Yuuki, T., Nomura, T., & Tezuka, T. (1985). Journal of Biochemistry, 98, 1147–1156.Google Scholar
  116. 116.
    Tomazic, S. J., & Klibanov, A. M. (1988). Journal of Biological Chemistry, 263, 3092–3096.Google Scholar
  117. 117.
    Chattopadhyay, K., Sffarian, S., Elson, E. L., & Frieden, C. (2005). Biophysical Journal, 88, 1413–1422.CrossRefGoogle Scholar
  118. 118.
    Buchner, J., Schmidt, M., Fuchs, M., Jaenicke, R., Rudolph, R., & Schmid, F. X. (1991). Biochem, 30, 1586–1591.CrossRefGoogle Scholar
  119. 119.
    Ellis, R. J. (2003). Current Biology, 13, 881–883.CrossRefGoogle Scholar
  120. 120.
    Gill, I., & Ballasteros, A. (2000). Trends in Biotechnology, 18, 282–296.CrossRefGoogle Scholar
  121. 121.
    Zhang, X. J., Baase, W. A., & Matthews, B. W. (1992). Protein Science, 1, 761–766.CrossRefGoogle Scholar
  122. 122.
    Suzuki, Y., Ito, N., Yuuki, T., Yamagata, H., & Udaka, S. (1989). Journal of Biological Chemistry, 203, 18933–18938.Google Scholar
  123. 123.
    Barnett, C. C., Mitchinson, C., Power, S. D., & Roquad, T. C. A. (1998). Patent Application US, 5, 524–532.Google Scholar
  124. 124.
    Lehmann, M., & Wyss, M. (2001). Current Opinion in Biotechnology, 12, 371–375.CrossRefGoogle Scholar
  125. 125.
    Arnold, F. H. (1993). FASEB Journal, 7, 744–749.Google Scholar
  126. 126.
    Chen, K., & Arnold, F. H. (1991). Biotechnol, 9, 1073–1077.CrossRefGoogle Scholar
  127. 127.
    Pantoliano, M. W., Whitlow, M., Wood, J. F., Dodd, S. W., Hardman, K. D., Rollence, M. L., et al. (1989). Biochem, 28, 7205–7213.CrossRefGoogle Scholar
  128. 128.
    Declerck, N., Machius, M., Joyet, P., Wiegand, G., Huber, R., & Gaillardin, C. (2003). Protein Engineering, 16, 287–293.CrossRefGoogle Scholar
  129. 129.
    Shaw, A., Bott, R., & Day, A. G. (1999). Current Opinion in Biotechnology, 10, 349–352.CrossRefGoogle Scholar
  130. 130.
    Bessler, C., Schmitt, J., Maurer, K., & Schmid, R. D. (2003). Protein Science, 12, 2141–2149.CrossRefGoogle Scholar
  131. 131.
    Machius, M., Declerck, N., Huberr, R., & Wiegand, G. J. (2003). Biological Chemistry, 278, 11546–11553.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  1. 1.Department of Biochemistry, Faculty of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations