Applied Biochemistry and Biotechnology

, Volume 162, Issue 2, pp 429–443 | Cite as

Purification and Characterization of Two Extracellular Xylanases from Penicillium sclerotiorum: A Novel Acidophilic Xylanase



Two xylanases from the crude culture filtrate of Penicillium sclerotiorum were purified to homogeneity by a rapid and efficient procedure, using ion-exchange and molecular exclusion chromatography. Molecular masses estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 23.9 and 33.1 kDa for xylanase I and II, respectively. The native enzymes’ molecular masses of 23.8 and 30.8 kDa were estimated for xylanase I and II, respectively, by molecular exclusion chromatography. Both enzymes are glycoproteins with optimum temperature and pH of 50 °C and pH 2.5 for xylanase I and 55 °C and pH 4.5 for xylanase II. The reducing agents β-mercaptoethanol and dithio-treitol enhanced xylanase activities, while the ions Hg2+ and Cu2+ as well the detergent SDS were strong inhibitors of both enzymes, but xylanase II was stimulated when incubated with Mn2+. The K m value of xylanase I for birchwood xylan and for oat spelt xylan were 6.5 and 2.6 mg mL−1, respectively, whereas the K m values of xylanase II for these substrates were 26.61 and 23.45 mg mL−1. The hydrolysis of oat spelt xylan by xylanase I released xylobiose and larger xylooligosaccharides while xylooligosaccharides with a decreasing polymerization degree up to xylotriose were observed by the action of xylanase II. The present study is among the first works to examine and describe an extracellular, highly acidophilic xylanase, with an unusual optimum pH at 2.5. Previously, only one work described a xylanase with optimum pH 2.0. This novel xylanase showed interesting characteristics for biotechnological process such as feed and food industries.


Penicillium sclerotiorum Xylanase Enzyme purification Enzyme characterization 



The authors would like to thank CNPq (National Council of Technological and Scientific Development) for the financial support and the scholarship awarded to the first author.


  1. 1.
    Biely, P. (1985). Trends in Biotechnology, 3, 286–290.CrossRefGoogle Scholar
  2. 2.
    Kulkarni, N., Shendye, A., & Rao, M. (1999). FEMS Microbiology Reviews, 23, 411–456.CrossRefGoogle Scholar
  3. 3.
    Collins, T., Gerday, C., & Feller, G. (2005). FEMS Microbiology Reviews, 29, 3–23.CrossRefGoogle Scholar
  4. 4.
    Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Applied Microbiology Biotechnology, 56, 326–338.CrossRefGoogle Scholar
  5. 5.
    Wong, K. K. Y., Tan, L. U. L., & Saddler, J. N. (1988). Microbiological Reviews, 52, 305–317.Google Scholar
  6. 6.
    Sunna, A., & Antranikian, G. (1997). Critical Reviews in Biotechnology, 17, 39–67.CrossRefGoogle Scholar
  7. 7.
    Chandrakant, P., & Bisaria, B. S. (1998). Critical Reviews in Biotechnology, 18, 295–331.CrossRefGoogle Scholar
  8. 8.
    Matt, J., Roza, M., Verbakel, J., Stam, H., da Silra, M. J. S., Egmond, M. R., et al. (1992). In J. Visser, G. Beldman, M. A. Kursters-van Someren & A. G. J. Voragen (Eds.), Xylan and xylanases (pp. 349–360). Amsterdam: Elsevier.Google Scholar
  9. 9.
    Polizeli, M. L. T. M., Rizzati, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A., & Amorin, D. S. (2005). Applied Microbiology Biotechnology, 67, 577–91.CrossRefGoogle Scholar
  10. 10.
    Krisana, A., Rutchadaporn, S., Jarupan, G., Lily, E., Sutipa, T., & Kanyawim, K. (2005). Journal of Biochemistry and Molecular Biology, 38, 17–23.Google Scholar
  11. 11.
    Moss, M. O. (1987). In J. F. Peberdy (Ed.), Penicillium and Acremonium (pp. 37–71). New York: Plenum.Google Scholar
  12. 12.
    Chávez, R., Bull, P., & Eyzaguirre, J. (2006). Journal of Biotechnology, 123, 413–433.CrossRefGoogle Scholar
  13. 13.
    Knob, A., & Carmona, E. C. (2008). World Applied Sciences Journal, 4(227), 283.Google Scholar
  14. 14.
    Vogel, H. J. (1956). Microbial Genetics Bulletin, 13, 42–43.Google Scholar
  15. 15.
    Miller, G. L. (1959). Analytical Chemistry, 31, 426–429.CrossRefGoogle Scholar
  16. 16.
    Lowry, O. H., Rosebrough, N. F., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.Google Scholar
  17. 17.
    Laemmli, U. K. (1970). Nature, 227, 680–685.CrossRefGoogle Scholar
  18. 18.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Ribers, P. A., & Smith, F. (1956). Analytical Chemistry, 58, 350–356.CrossRefGoogle Scholar
  19. 19.
    Fontana, J. D., Geabrara, M., Blumel, M., Schneider, H., Mackenzie, C. R., & Johnson, H. K. (1988). Methods in Enzymology, 160, 560–571.CrossRefGoogle Scholar
  20. 20.
    Törrönem, A., & Rouvine, J. (1997). Journal of Biotechnology, 57, 137–149.CrossRefGoogle Scholar
  21. 21.
    Segura, B. G., & Fevre, M. (1993). Applied and Environmental Microbiology, 59, 3654–3660.Google Scholar
  22. 22.
    Nair, S. G., Sindhu, R., & Shashidhar, S. (2008). Applied Biochemistry Biotechnology, 149, 229–243.CrossRefGoogle Scholar
  23. 23.
    Fialho, M. B., & Carmona, E. C. (2004). Folia Microbiologica, 49, 13–18.CrossRefGoogle Scholar
  24. 24.
    Carmona, E. C., Brochetto-Braga, M. R., Pizzirani-Kleiner, A. A., & Jorge, J. A. (1998). FEMS Microbiology Letters, 166, 311–315.CrossRefGoogle Scholar
  25. 25.
    Carmona, E. C., Fialho, M. B., Buchgnani, E. B., Coelho, G. D. C., Brochetto-Braga, M. R., & Jorge, J. A. (2005). Process Biochemistry, 40, 359–364.CrossRefGoogle Scholar
  26. 26.
    Flannigan, B., & Sellars, P. N. (1977). Transaction of the British Mycological Society, 69, 316–317.CrossRefGoogle Scholar
  27. 27.
    Li, L., Hongmei, T., Cheng, Y., Jiang, Z., & Yang, S. (2006). Enzyme and Microbial Technology, 38, 780–787.CrossRefGoogle Scholar
  28. 28.
    Krishnamurthy, S., & Vithayathil, P. J. (1989). Journal of Fermentation and Bioengineering, 67, 77–82.CrossRefGoogle Scholar
  29. 29.
    Amoresano, A., Andolfo, A., Corsaro, M. M., Zocchi, I., Petrescu, I., Gerday, C., et al. (2000). Glycobiology, 10, 451–458.CrossRefGoogle Scholar
  30. 30.
    Romanowska, I., Polak, J., & Bielecki, S. (2006). Applied Microbiology Biotechnology, 69, 665–671.CrossRefGoogle Scholar
  31. 31.
    Sadrim, V. C., Rizzatti, A. C. S., Terenzi, H. F., Jorge, J. A., Milagres, A. M. F., & Polizeli, M. L. T. M. (2005). Process Biochemistry, 40, 1823–1828.CrossRefGoogle Scholar
  32. 32.
    Saha, B. C. (2001). Applied Microbiology Biotechnology, 56, 762–766.CrossRefGoogle Scholar
  33. 33.
    Dutta, T., Sengupta, R., Sahoo, R., Ray, S. S., Bhattacharjee, A., & Ghosh, S. (2007). Letters in Applied Microbiology, 44, 206–211.CrossRefGoogle Scholar
  34. 34.
    Kimura, T., Ito, J., Kawano, A., Makino, T., Kondo, H., Karita, S., et al. (2000). Bioscience Biotechnology and Biochemistry, 64, 1230–1237.CrossRefGoogle Scholar
  35. 35.
    Lee, J.-W., Park, J.-Y., Kwon, M., & Choi, I.-G. (2009). Journal of Bioscience and Bioengineering, 107, 33–37.CrossRefGoogle Scholar
  36. 36.
    Madlala, A. M., Bissoon, S., Singh, S., & Christov, L. (2001). Biotechnology Letters, 23, 345–351.CrossRefGoogle Scholar
  37. 37.
    Hakulinen, N., Turunen, O., Jamis, J., Leisola, M., & Rouvinen, J. (2003). European Journal of Biochemistry, 270, 1399–1412.CrossRefGoogle Scholar
  38. 38.
    Fengxia, L., Mei, L., Zhaoxin, L., Xiaomei, B., Zhao, H., & Wang, Y. (2008). Bioresource Technology, 99, 5983–5941.Google Scholar
  39. 39.
    Bastawde, K. B. (1992). World Journal of Microbiology and Biotechnology, 8, 353–368.CrossRefGoogle Scholar
  40. 40.
    Kang, M. K., Maeng, P. J., & Rhee, Y. H. (1996). Applied and Environmental Microbiology, 62, 3480–3482.Google Scholar
  41. 41.
    Haas, H., Herfurth, E., Stoffler, G., & Rendl, B. (1992). Acta Biochimica et Biophysica Sinica, 117, 279–286.Google Scholar
  42. 42.
    Li, K., Azadi, P., Collins, R., Tolan, J., Kim, J. S., & Eriksoon, K. E. L. (2000). Enzyme and Microbial Technology, 27, 89–94.CrossRefGoogle Scholar
  43. 43.
    Jorge, I., Rosa, O., Navas-Cortés, J. A., Jiménez-Días, R. M., & Tena, M. (2005). Antonie van Leeuwenhoek, 88, 49–59.CrossRefGoogle Scholar
  44. 44.
    Cardoso, O. A. V., & Filho, E. X. F. (2003). FEMS Microbiology Letters, 223, 309–314.CrossRefGoogle Scholar
  45. 45.
    Bedford, M. R., & Classen, H. L. (1992). In J. Visser, G. Beldman, M. A. Kursters-van Someren & A. G. J. Voragen (Eds.), Xylan and xylanases (pp. 361–370). Amsterdam: Elsevier.Google Scholar
  46. 46.
    Graminha, E. B. N., Gonçalves, A. Z. L., Pirota, R. D. P. B., Balsalobre, M. A. A., Da Silva, R., & Gomes, E. (2008). Animal Feed Science and Technology, 144, 1–22.CrossRefGoogle Scholar
  47. 47.
    Beauchemim, K. A., Colombatto, D., Morgavi, D. P., & Yang, W. Z. (2003). Journal of Animal Science, 81, E37–E47.Google Scholar
  48. 48.
    Eijsink, V. G. H., Gaseidnes, S., Borchert, T. V., & van den Burg, B. (2005). Biomolecular Engineering, 22, 21–30.CrossRefGoogle Scholar
  49. 49.
    Biely, P. (1985). Trends in Biotechnology, 3, 286–290.CrossRefGoogle Scholar
  50. 50.
    Colagrande, O., Silva, A., & Fumi, M. D. (1994). Biotechnology Progress, 10, 2–18.CrossRefGoogle Scholar
  51. 51.
    Moure, A., Gullon, P., Dominguez, H., & Parajó, J. C. (2006). Process Biochemistry, 41, 1913–1923.CrossRefGoogle Scholar
  52. 52.
    Chen, C. S., Chen, J. L., & Lin, T. Y. (1997). Enzyme and Microbial Technology, 21, 91–96.CrossRefGoogle Scholar
  53. 53.
    Eneyskaya, E. V., Brumer, L. V., Backinowsky, D. R., Ivanen, A. A., Kulminskaya, K. A., Shabalin, K. A., et al. (2003). Carbohydrate Research, 338, 213–325.CrossRefGoogle Scholar
  54. 54.
    Jiang, Z., Zhu, Y., Li, L., Yu, X., Kusakabe, I., Kitaoka, M., et al. (2004). Journal of Biotechnology, 114, 125–134.CrossRefGoogle Scholar
  55. 55.
    Kurakate, M., Fujii, T., Yata, M., Okazaki, T., & Komaki, T. (2005). Biochimica et Biophysica Acta, 1726, 272–279.Google Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  1. 1.Department of Biochemistry and MicrobiologySão Paulo State UniversityRio ClaroBrazil

Personalised recommendations