Applied Biochemistry and Biotechnology

, Volume 160, Issue 8, pp 2275–2286

High-Yield Hypocrellin A Production in Solid-State Fermentation by Shiraia sp. SUPER-H168

  • Yujie Cai
  • Xiaohui Liang
  • Xiangru Liao
  • Yanrui Ding
  • Jun Sun
  • Xiaohui Li
Article

Abstract

Hypocrellin A production by Shiraia sp. SUPER-H168 was studied under solid-state fermentation. Corn was found to be the best substrate after evaluating eight kinds of agro-industrial crops and residues. The optimized solid-state fermentation conditions were as follows: inoculum size 3 × 106 spores, substrate particle size 0.8–1 mm, initial moisture content 50%, and temperature 30 °C. Six kinds of external carbon source and seven kinds of external nitrogen source were evaluated, respectively, for HA production. Glucose and NaNO3 were the best. The combination of them was optimized by the response surface method. The optimum compositions of the supplementary glucose and NaNO3 were 1.65 g/100 g and 0.43 g/L, respectively. Hypocrellin A production reached 4.7 mg/g.

Keywords

Hypocrellin A Solid state fermentation Optimization C/N ratio Response surface method 

References

  1. 1.
    Wan, X. Y., & Chen, Y. T. (1981). Chinese Science Bulletin, 26, 1040–1042.Google Scholar
  2. 2.
    Li, C., Wang, H. Q., Xie, J. L., Ling, N. Y., Wan, D. H., & Chen, Y. T. (2000). Chinese Traditional and Herbal Drugs, 31, 250–251.Google Scholar
  3. 3.
    Diwu, Z. J. (1995). Photochemistry and Photobiology, 61, 529–539.Google Scholar
  4. 4.
    Ma, G. Y., Khan, S. I., Jacob, M. R., Tekwani, B. L., Li, Z., Pasco, D. S., et al. (2004). Antimicrobial Agents and Chemotherapy, 48, 4450–4452.CrossRefGoogle Scholar
  5. 5.
    Kishi, T., Tahara, S., Taniguchi, N., Tsuda, M., Tanaka, C., & Takahashi, S. (1991). Planta Medica, 57, 376–379.CrossRefGoogle Scholar
  6. 6.
    Fang, L. Z., Qing, C., Shao, H. J., Yang, Y. D., Dong, Z. J., Wang, F., et al. (2006). Journal of Antibiotics, 59, 351–354.CrossRefGoogle Scholar
  7. 7.
    Wu, H. M., Lao, X. F., Wang, Q. W., & Lu, R. R. (1989). Journal of Natural Products, 52, 948–951.CrossRefGoogle Scholar
  8. 8.
    Fu, N. W., & Chu, Y. X. (1989). Acta Pharmacologica Sinica, 10, 371–373.Google Scholar
  9. 9.
    Zhang, J., Cao, E. H., Li, J. F., Zhang, T. C., & Ma, W. J. (1998). Journal of Photochemistry and Photobiology B, 43, 106–111.CrossRefGoogle Scholar
  10. 10.
    Hirayama, J., Ikebuchi, K., Abe, H., Kwon, K. W., Ohnishi, Y., Horiuchi, M., et al. (1997). Photochemistry and Photobiology, 66, 697–700.CrossRefGoogle Scholar
  11. 11.
    Cheng, T. F., Jia, X. M., Ma, X. H., Lin, H. P., & Zhao, Y. H. (2004). Journal of Basic Microbiology, 44, 339–350.CrossRefGoogle Scholar
  12. 12.
    Li, D. X., Zhao, J., He, Y., & Yang, Z. R. (2003). Journal of Sichuan University (Natural Science Edition, in Chinese), 40, 139–143.Google Scholar
  13. 13.
    Yang, H. L., Xiao, C. X., Ma, W. X., & He, G. Q. (2009). Dyes and Pigments, 82, 142–146.CrossRefGoogle Scholar
  14. 14.
    Liang, X. H., Cai, Y. J., Liao, X. R., Wu, K., Wang, L., Zhang, D. B., et al. (2009). Microbiological Research, 164, 9–17.CrossRefGoogle Scholar
  15. 15.
    Elson, L. A., & Morgan, W. T. (1933). Biochemical Journal, 27, 1824–1828.Google Scholar
  16. 16.
    Owusu-Apenten, R. K. (2002). Food protein analysis: Quantitative effects on processing. New York: Marcel Dekker.CrossRefGoogle Scholar
  17. 17.
    Meares, C. A., Bogracheva, T. Y., Hill, S. E., & Hedley, C. L. (2004). Starch-Starke, 56, 215–224.CrossRefGoogle Scholar
  18. 18.
    García-Armesto, M. R., Prieto, M., García-López, M. L., Otero, A., & Moreno, B. (1993). Microbiologia, 9, 1–13.Google Scholar
  19. 19.
    Douglas, C. M. (2000). Design and analysis of experiments (5th ed.). New York: John Wiley & Sons.Google Scholar
  20. 20.
    Raimbault, M. (1998). Electronic Journal of Biotechnology, 3, 174–188.CrossRefGoogle Scholar
  21. 21.
    Pandey, A., Soccol, C. R., Nigam, P., Soccol, V. T., Vandenbegh, L., & Mohan, R. (2000). Bioresearch Technology, 74, 81–87.CrossRefGoogle Scholar
  22. 22.
    Elson, M. K., Schisler, D. A., & Jackson, M. A. (1998). Mycologia, 90, 406–413.CrossRefGoogle Scholar
  23. 23.
    Sasaki, N., Suehara, K., Kohda, J., Nakano, Y., & Yang, T. (2003). Journal of Bioscience and Bioengineering, 96, 47–52.Google Scholar
  24. 24.
    Sabu, A., Augur, C., Swati, C., & Pandey, A. (2006). Process Biochemistry, 41, 575–580.CrossRefGoogle Scholar
  25. 25.
    Shankara, S. K., & Mulimani, V. H. (2007). Bioresearch Technology, 98, 958–961.CrossRefGoogle Scholar
  26. 26.
    Tunga, R., Banerjee, R., & Bhattacharyya, B. C. (1998). Bioprocess Engineering, 19, 187–190.CrossRefGoogle Scholar
  27. 27.
    Park, Y. S., Kang, S. W., Lee, J. S., Hong, S. I., & Kim, S. W. (2002). Applied Microbiology and Biotechnology, 58, 761–766.CrossRefGoogle Scholar
  28. 28.
    Valera, H. R., Gomes, J., Lakshmi, S., Gururaja, R., Suryanarayan, S., & Kumar, D. (2005). Enzyme and Microbial Technology, 37, 521–526.CrossRefGoogle Scholar
  29. 29.
    Yua, J. L., Zhang, X., & Tan, T. W. (2008). Fuel Processing Technology, 89, 1056–1059.CrossRefGoogle Scholar
  30. 30.
    Pandey, A., Soccol, C. R., & Mitchell, D. (2000). Process Biochemistry, 35, 1153–1169.CrossRefGoogle Scholar
  31. 31.
    Raghavarao, K. S. M. S., Ranganathan, T. V., & Karanth, N. G. (2003). Biochemical Engineering Journal, 13, 127–135.CrossRefGoogle Scholar
  32. 32.
    Adinarayana, K., Prabhakar, T., Srinivasulu, V., Rao, M. A., Lakshmi, P. J., & Ellaiah, P. (2003). Process Biochemistry, 39, 171–177.CrossRefGoogle Scholar
  33. 33.
    Couto, S. R., & Sanroman, M. A. (2006). Journal of Food Engineering, 76, 291–302.CrossRefGoogle Scholar
  34. 34.
    Babitha, S., Soccol, C. R., & Pandey, A. (2007). Bioresearch Technology, 99, 1554–1560.CrossRefGoogle Scholar
  35. 35.
    Virupakshi, S., Gireesh, B. K., Gaikwad, S. R., & Naik, G. R. (2005). Process Biochemistry, 40, 431–435.CrossRefGoogle Scholar
  36. 36.
    Morakotkarn, D., Kawasaki, H., & Seki, T. (2007). FEMS Microbiology Letters, 266, 10–19.CrossRefGoogle Scholar
  37. 37.
    Cheng, L. S., & Wang, J. Z. (1985). Acta Biologiae Experimentalis Sinica (in Chinese), 18, 89–90.Google Scholar
  38. 38.
    De Carvalho, J. C., Pandey, A., Oishi, B. O., Brand, D., Rodriguez-Leon, J. A., & Soccol, C. R. (2006). Biochemical Engineering Journal, 29, 262–269.Google Scholar
  39. 39.
    Hudson, J. B., Zhou, J., Chen, J., Harris, L., & Towers, G. H. (1994). Photochemistry and Photobiology , 60, 253–255.CrossRefGoogle Scholar
  40. 40.
    Ma, G., Khan, S. I., Jacob, M. R., Tekwani, B. L., Li, Z., Pasco, D. S., et al. (2004). Antimicrob. Agents Chemother, 48, 4450–4452.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Yujie Cai
    • 1
  • Xiaohui Liang
    • 1
  • Xiangru Liao
    • 1
  • Yanrui Ding
    • 2
  • Jun Sun
    • 2
  • Xiaohui Li
    • 3
  1. 1.Key Laboratory of Industrial Biotechnology, School of BiotechnologyJiangnan UniversityWuxiChina
  2. 2.School of Information TechnologyJiangnan UniversityWuxiChina
  3. 3.School of Food ScienceShanghai Ocean UniversityShanghaiChina

Personalised recommendations