Advertisement

Applied Biochemistry and Biotechnology

, Volume 162, Issue 1, pp 1–12 | Cite as

Gene Cloning, Overexpression, and Characterization of a Xylanase from Penicillium sp. CGMCC 1669

  • Wanli Liu
  • Pengjun Shi
  • Qiang Chen
  • Peilong Yang
  • Guozeng Wang
  • Yaru Wang
  • Huiying Luo
  • Bin Yao
Article

Abstract

A xylanase-encoding gene, xyn11F63, was isolated from Penicillium sp. F63 CGMCC1669 using degenerated polymerase chain reaction (PCR) and thermal asymmetric interlaced (TAIL)-PCR techniques. The full-length chromosomal gene consists of 724 bp, including a 73-bp intron, and encodes a 217 amino acid polypeptide. The deduced amino acid sequence of xyn11F63 shows the highest identity of 70% to the xylanase from Penicillium sp. strain 40, which belongs to glycosyl hydrolases family 11. The gene was overexpressed in Pichia pastoris, and its activity in the culture medium reached 516 U ml−1. After purification to electrophoretic homogeneity, the enzyme showed maximal activity at pH 4.5 and 40°C, was stable at acidic buffers of pH 4.5–9.0, and was resistant to proteases (proteinase K, trypsin, subtilisin A, and α-chymotrypsin). The specific activity, K m, and V max for oat spelt xylan substrate was 7,988 U mg−1, 22.2 mg ml−1, and 15,105.7 μmol min−1 mg−1, respectively. These properties make XYN11F63 a potential economical candidate for use in feed and food industrial applications.

Keywords

Xylanase Penicillium sp. F63 CGMCC 1669 Pichia pastoris Overexpression 

Notes

Acknowledgements

This work was supported by the Chinese National High Technology Research and Development Program (863 Program, Grant No. 2007AA100601) and the Chinese Agricultural Microorganism Collection and Share Program (No. 2005DKA21201).

References

  1. 1.
    Polizeli, M., Rizzatti, A., Monti, R., Terenzi, H., Jorge, J., & Amorim, D. (2005). Applied Microbiology and Biotechnology, 67, 577–591.CrossRefGoogle Scholar
  2. 2.
    Collins, T., Gerday, C., & Feller, G. (2005). FEMS Microbiology Reviews, 29, 3–23.CrossRefGoogle Scholar
  3. 3.
    Chávez, R., Bull, P., & Eyzaguirre, J. (2006). Journal of Biotechnology, 123, 413–433.CrossRefGoogle Scholar
  4. 4.
    Viikari, L., Kantelinen, A., Sundquist, J., & Linko, M. (1994). FEMS Microbiology Reviews, 13, 335–350.CrossRefGoogle Scholar
  5. 5.
    Jeffries, T. (1996). Current Opinion in Biotechnology, 7, 337–342.CrossRefGoogle Scholar
  6. 6.
    Haltrich, D., Nidetzky, B., Kulbe, K., Steiner, W., & Zupancic, S. (1996). Bioresource Technology, 58, 137–162.CrossRefGoogle Scholar
  7. 7.
    Tanaka, H., Nakamura, T., Hayashi, S., & Ohta, K. (2005). Journal of Bioscience and Bioengineering, 100, 623–630.CrossRefGoogle Scholar
  8. 8.
    Furniss, C., Belshaw, N., Alcocer, M., Williamson, G., Elliott, G., Gebruers, K., et al. (2002). Biochimica et Biophysica Acta: Proteins and Proteomics, 1598, 24–29.CrossRefGoogle Scholar
  9. 9.
    Kimura, T., Ito, J., Kawano, A., Makino, T., Kondo, H., Karita, S., et al. (2000). Bioscience, Biotechnology, and Biochemistry, 64, 1230–1237.CrossRefGoogle Scholar
  10. 10.
    Diaz, R., Sapag, A., Peirano, A., Steiner, J., & Eyzaguirre, J. (1997). Gene, 187, 247–251.CrossRefGoogle Scholar
  11. 11.
    Milagres, A., & Prade, R. (1994). Enzyme and Microbial Technology, 16, 627–632.CrossRefGoogle Scholar
  12. 12.
    Mandels, M., & Weber, J. (1969). Advances in Chemistry Series, 95, 391–414.CrossRefGoogle Scholar
  13. 13.
    Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning, a laboratory manual. New York: Cold Spring Harbor Laboratory Press.Google Scholar
  14. 14.
    Liu, Y., & Whittier, R. (1995). Genomics, 25, 674–681.CrossRefGoogle Scholar
  15. 15.
    Laemmli, U. (1970). Nature, 227, 680–685.CrossRefGoogle Scholar
  16. 16.
    Bradford, M. (1976). Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  17. 17.
    Miller, G. (1959). Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  18. 18.
    Yang, P., Shi, P., Wang, Y., Bai, Y., Meng, K., Luo, H., et al. (2007). Journal of Microbiology and Biotechnology, 17, 58–66.Google Scholar
  19. 19.
    Cereghino, J., & Cregg, J. (2000). FEMS Microbiology Reviews, 24, 45–66.CrossRefGoogle Scholar
  20. 20.
    Knob, A., & Carmona, E. (2008). World Applied Sciences Journal, 4, 277–283.Google Scholar
  21. 21.
    Mi, S., Meng, K., Wang, Y., Bai, Y., Yuan, T., Luo, H., et al. (2006). Enzyme and Microbial Technology, 40, 1373–1380.CrossRefGoogle Scholar
  22. 22.
    Ryan, S., Nolan, K., Thompson, R., Gubitz, G., Savage, A., & Tuohy, M. (2003). Enzyme and Microbial Technology, 33, 775–785.CrossRefGoogle Scholar
  23. 23.
    Ito, K., Iwashita, K., & Iwano, K. (1992). Bioscience, Biotechnology, and Biochemistry, 56, 1338–1340.CrossRefGoogle Scholar
  24. 24.
    Kinoshita, K., Takano, M., Koseki, T., Ito, K., & Iwano, K. (1995). Journal of Fermentation and Bioengineering, 79, 422–428.CrossRefGoogle Scholar
  25. 25.
    Krengel, U., & Dijkstra, B. (1996). Journal of Molecular Biology, 263, 70–78.CrossRefGoogle Scholar
  26. 26.
    Marinsek-Logar, A. G., Martin, J., Wallace, R. J., Nekrep, F. V., & Flint, H. J. (1995). FEMS Microbiology Letters, 125, 135–142.Google Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Wanli Liu
    • 1
    • 2
  • Pengjun Shi
    • 1
  • Qiang Chen
    • 2
  • Peilong Yang
    • 1
  • Guozeng Wang
    • 1
  • Yaru Wang
    • 1
  • Huiying Luo
    • 1
  • Bin Yao
    • 1
  1. 1.Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research InstituteChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  2. 2.Institute of Biochemistry and Molecular Biology, College of Life ScienceLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations