Applied Biochemistry and Biotechnology

, Volume 160, Issue 6, pp 1808–1821

Single-Chain Fv Antibody Fragments Retain Binding Properties of the Monoclonal Antibody Raised Against Peptide P1 of the Human Prion Protein

  • Nives Škrlj
  • Vladka Čurin Šerbec
  • Marko Dolinar


Prion diseases are incurable neurodegenerative diseases that affect both humans and animals. The infectious agent is a pathogenic form of the prion protein that accumulates in brain as amyloids. Currently, there is neither cure nor reliable preclinical diagnostics on the market available. The growing number of reports shows that passive immunisation is one of the most promising strategies for prion disease therapy, where antibodies against prions may prevent and even cure the infection. Since antibodies are large molecules and, thus, might not be suitable for the therapy, different antibody fragments are a good alternative. Therefore, we have designed and prepared single-chain antibody fragments (scFvs) derived from the PrPSc-specific murine monoclonal antibody V5B2. Using a new expression vector pMD204, we produced scFvs in two opposing chain orientations in the periplasm of Escherichia coli. Both recombinant antibody fragments retained the specificity of the parent antibody and one of these exhibited binding properties comparable to the corresponding murine Fab fragments with the affinity in nM range. Our monovalent antibody fragments are of special interest in view of possible therapeutic reagents for prion diseases as well as for development of a new generation of diagnostics.


Prion protein Recombinant antibody scFv Escherichia coli 



2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)


Bovine serum albumin


Central nervous system


Diethyl pyrocarbonate


Enzyme-linked immunosorbent assay


Antibody variable domains (Vl+Vh)


scFv in Vh-linker-Vl chain arrangement


Horseradish peroxidase


Immobilized metal ion affinity chromatography


Isopropyl β-d-1-thiogalactopyranoside


scFv in Vl-linker-Vh chain arrangement


Monoclonal antibody


Polymerase chain reaction


Prion protein


Cellular form of the PrP


Pathogenic form of the PrP


Single-chain antibody variable domains


Tris-buffered saline




Variable domain of the heavy chain of an antibody


Variable domain of the light chain of an antibody


  1. 1.
    Vana, K., Zuber, C., Nikles, D., & Weiss, S. (2007). Novel aspects of prions, their receptor molecules, and innovative approaches for TSE therapy. Cellular and Molecular Neurobiology, 27, 107–128.CrossRefGoogle Scholar
  2. 2.
    Prusiner, S. B. (1998). Prions. Proceedings of the National Academy of Sciences of the United States of America, 95, 13363–13383.CrossRefGoogle Scholar
  3. 3.
    Müller-Schiffmann, A., & Korth, C. (2008). Vaccine approaches to prevent and treat prion infection: Progress and challenges. BioDrugs, 22, 45–52.CrossRefGoogle Scholar
  4. 4.
    Enari, M., Flechsig, E., & Weissmann, C. (2001). Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proceedings of the National Academy of Sciences of the United States of America, 98, 9295–9299.CrossRefGoogle Scholar
  5. 5.
    Heppner, F. L., Musahl, C., Arrighi, I., Klein, M. A., Rülicke, T., Oesch, B., et al. (2001). Prevention of scrapie pathogenesis by transgenic expression of anti-prion protein antibodies. Science, 294, 178–182.CrossRefGoogle Scholar
  6. 6.
    White, A. R., Enever, P., Tayebi, M., Mushens, R., Linehan, J., Brandner, S., et al. (2003). Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature, 422, 80–83.CrossRefGoogle Scholar
  7. 7.
    Solforosi, L., Criado, J. R., McGavern, D. B., Wirz, S., Sánchez-Alavez, M., Sugama, S., et al. (2004). Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science, 303, 1514–1516.CrossRefGoogle Scholar
  8. 8.
    Alexandrenne, C., Hanoux, V., Dkhissi, F., Boquet, D., Couraud, J. Y., & Wijkhuisen, A. (2009). Curative properties of antibodies against prion protein: A comparative in vitro study of monovalent fragments and divalent antibodies. Journal of Neuroimmunology, . doi:10.1016/j.jneuroim.2009.01.025.Google Scholar
  9. 9.
    Peretz, D., Williamson, R. A., Kaneko, K., Vergara, J., Leclerc, E., Schmitt-Ulms, G., et al. (2001). Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature, 412, 739–743.CrossRefGoogle Scholar
  10. 10.
    Donofrio, G., Heppner, F. L., Polymenidou, M., Musahl, C., & Aguzzi, A. (2005). Paracrine inhibition of prion propagation by anti-PrP single-chain Fv miniantibodies. Journal of Virology, 79, 8330–8338.CrossRefGoogle Scholar
  11. 11.
    Campana, V., Zentilin, L., Mirabile, I., Kranjc, A., Casanova, P., Giacca, M., et al. (2009). Development of antibody fragments for immunotherapy of prion diseases. Biochemical Journal, 418, 507–515.CrossRefGoogle Scholar
  12. 12.
    Bird, R. E., Hardman, K. D., Jacobson, J. W., Johnson, S., Kaufman, B. M., Lee, S. M., et al. (1988). Single-chain antigen-binding proteins. Science, 242, 423–426.CrossRefGoogle Scholar
  13. 13.
    Huston, J. S., Levinson, D., Mudgett-Hunter, M., Tai, M. S., Novotný, J., Margolies, M. N., et al. (1988). Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 85, 5879–5883.CrossRefGoogle Scholar
  14. 14.
    Čurin Šerbec, V., Bresjanac, M., Popović, M., Pretnar Hartman, K., Galvani, V., Rupreht, R., et al. (2004). Monoclonal antibody against a peptide of human prion protein discriminates between Creutzfeldt-Jacob’s disease-affected and normal brain tissue. Journal of Biological Chemistry, 279, 3694–3698.Google Scholar
  15. 15.
    Škrlj, N., Erčulj, N., & Dolinar, M. (2009). A versatile bacterial expression vector based on the synthetic biology plasmid pSB1. Protein Expression and Purification, 64, 198–204.CrossRefGoogle Scholar
  16. 16.
    Colja Venturini, A., Bresjanac, M., Vranac, T., Koren, S., Narat, M., Popović, M., et al. (2009). Anti-idiotypic antibodies: A new approach in prion research. @@BMC Immunol, 10, 16.CrossRefGoogle Scholar
  17. 17.
    Koren, S., Kosmač, M., Colja Venturini, A., Montanič, S., & Čurin Šerbec, V. (2008). Antibody variable-region sequencing as a method for hybridoma cell-line authentication. Applied Microbiology and Biotechnology, 78, 1071–1078.CrossRefGoogle Scholar
  18. 18.
    Dalbøge, H., Jensen, E. B., Tøttrup, H., Grubb, A., Abrahamson, M., Olafsson, I., et al. (1989). High-level expression of active human cystatin C in Escherichia coli. Gene, 79, 325–332.CrossRefGoogle Scholar
  19. 19.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  20. 20.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.CrossRefGoogle Scholar
  21. 21.
    Wang, Z., Raifu, M., Howard, M., Smith, L., Hansen, D., Goldsby, R., et al. (2000). Universal PCR amplification of mouse immunoglobulin gene variable regions: The design of degenerate primers and an assessment of the effect of DNA polymerase 3′ to 5′ exonuclease activity. Journal of Immunological Methods, 233, 167–177.CrossRefGoogle Scholar
  22. 22.
    Frohman, M. A., Dush, M. K., & Martin, G. R. (1988). Rapid production of full-length cDNAs from rare transcripts: Amplification using a single gene-specific oligonucleotide primer. Proceedings of the National Academy of Sciences of the United States of America, 85, 8998–9002.CrossRefGoogle Scholar
  23. 23.
    Raag, R., & Whitlow, M. (1995). Single-chain Fvs. FASEB Journal, 9, 73–80.Google Scholar
  24. 24.
    Huston, J. S., Mudgett-Hunter, M., Tai, M. S., McCartney, J., Warren, F., Haber, E., et al. (1991). Protein engineering of single-chain Fv analogs and fusion proteins. Methods in Enzymology, 203, 46–88.CrossRefGoogle Scholar
  25. 25.
    Hu, X., O’Dwyer, R., & Wall, J. G. (2005). Cloning, expression and characterisation of a single-chain Fv antibody fragment against domoic acid in Escherichia coli. Journal of Biotechnology, 120, 38–45.CrossRefGoogle Scholar
  26. 26.
    Verma, R., Boleti, E., & George, A. J. (1998). Antibody engineering: Comparison of bacterial, yeast, insect and mammalian expression systems. Journal of Immunological Methods, 216, 165–181.CrossRefGoogle Scholar
  27. 27.
    Arbabi-Ghahroudi, M., Tanha, J., & MacKenzie, R. (2005). Prokaryotic expression of antibodies. Cancer and Metastasis Reviews, 24, 501–519.CrossRefGoogle Scholar
  28. 28.
    Hudson, P. J., & Kortt, A. A. (1999). High avidity scFv multimers; diabodies and triabodies. Journal of Immunological Methods, 231, 177–189.CrossRefGoogle Scholar
  29. 29.
    Korth, C., Stierli, B., Streit, P., Moser, M., Schaller, O., Fischer, R., et al. (1997). Prion (PrPSc)-specific epitope defined by a monoclonal antibody. Nature, 390, 74–77.CrossRefGoogle Scholar
  30. 30.
    Féraudet, C., Morel, N., Simon, S., Volland, H., Frobert, Y., Créminon, C., et al. (2005). Screening of 145 anti-PrP monoclonal antibodies for their capacity to inhibit PrPSc replication in infected cells. Journal of Biological Chemistry, 280, 11247–11258.CrossRefGoogle Scholar
  31. 31.
    Morel, E., Andrieu, T., Casagrande, F., Gauczynski, S., Weiss, S., Grassi, J., et al. (2005). Bovine prion is endocytosed by human enterocytes via the 37 kDa/67 kDa laminin receptor. American Journal of Pathology, 167, 1033–1042.Google Scholar
  32. 32.
    Lu, D., Jimenez, X., Witte, L., & Zhu, Z. (2004). The effect of variable domain orientation and arrangement on the antigen-binding activity of a recombinant human bispecific diabody. Biochemical and Biophysical Research Communications, 318, 507–513.CrossRefGoogle Scholar
  33. 33.
    Worn, A., & Pluckthun, A. (2001). Stability engineering of antibody single-chain Fv fragments. Journal of Molecular Biology, 305, 989–1010.CrossRefGoogle Scholar
  34. 34.
    Chowdhury, P. S., Vasmatzis, G., Beers, R., Lee, B., & Pastan, I. (1998). Improved stability and yield of a Fv-toxin fusion protein by computer design and protein engineering of the Fv. Journal of Molecular Biology, 281, 917–928.CrossRefGoogle Scholar
  35. 35.
    Willuda, J., Honegger, A., Waibel, R., Schubiger, P. A., Stahel, R., Zangemeister-Wittke, U., et al. (1999). High thermal stability is essential for tumor targeting of antibody fragments: Engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv fragment. Cancer Research, 59, 5758–5767.Google Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Nives Škrlj
    • 1
  • Vladka Čurin Šerbec
    • 1
    • 2
  • Marko Dolinar
    • 1
  1. 1.Chair of Biochemistry, Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Department for Production of Diagnostic Reagents and ResearchBlood Transfusion Centre of SloveniaLjubljanaSlovenia

Personalised recommendations