Applied Biochemistry and Biotechnology

, Volume 160, Issue 6, pp 1685–1698 | Cite as

Toxicity of Methanol and Formaldehyde Towards Saccharomyces cerevisiae as Assessed by DNA Microarray Analysis

  • Daisuke Yasokawa
  • Satomi Murata
  • Yumiko Iwahashi
  • Emiko Kitagawa
  • Ryoji Nakagawa
  • Tazusa Hashido
  • Hitoshi Iwahashi
Article

Abstract

To assess the toxicity of the C1 compounds methanol and formaldehyde, gene expression profiles of treated baker’s yeast were analyzed using DNA microarrays. Among approximately 6,000 open reading frames (ORFs), 314 were repressed and 375 were induced in response to methanol. The gene process category “energy” comprised the greatest number of induced genes while “protein synthesis” comprised the greatest number of repressed genes. Products of genes induced by methanol were mainly integral membrane proteins or were localized to the plasma membrane. A total of 622 and 610 ORFs were induced or repressed by formaldehyde, respectively. More than one-third of the genes found to be strongly repressed by formaldehyde belonged to the “protein synthesis” functional category. Conversely, genes in the subcategory of “nitrogen, sulfur, and selenium metabolism” within “metabolism” and in the category of “cell rescue, defense, and virulence” were up-regulated by exposure to formaldehyde. Our data suggest that membrane structure is a major target of methanol toxicity, while proteins were major targets of formaldehyde toxicity.

Keywords

Microarray Methanol Formaldehyde Toxicity Saccharomyces cerevisiae 

Notes

Acknowledgements

We thank Mr. Tsuyoshi Awa for arranging for this study and are grateful to Dr. Michihiko Saito for technical advice.

References

  1. 1.
    Wallace, E. A., & Green, A. S. (2009). Clinical Toxicology, 47, 239–242. doi:10.1080/15563650802498781.CrossRefGoogle Scholar
  2. 2.
    Parthasarathy, N. J., Kumar, R. S., & Devi, R. S. (2005). Journal of Immunotoxicology, 2, 115–121. doi:10.1080/15476910500187425.CrossRefGoogle Scholar
  3. 3.
    Hansen, J. M., Contreras, K. M., & Harris, C. (2005). Birth Defects Research. Part A, Clinical and Molecular Teratology, 73, 72–82. doi:10.1002/bdra.20094.CrossRefGoogle Scholar
  4. 4.
    Iwahashi, Y., Hosoda, H., Park, J. H., Lee, J. H., Suzuki, Y., Kitagawa, E., et al. (2006). Journal of Agricultural and Food Chemistry, 54, 1936–1942. doi:10.1021/jf052264g.CrossRefGoogle Scholar
  5. 5.
    Momose, Y., & Iwahashi, H. (2001). Environmental Toxicology and Chemistry, 20, 2353–2360. doi:10.1897/1551-5028(2001)020<2353:BOCUAD>2.0.CO;2.CrossRefGoogle Scholar
  6. 6.
    Lutstorf, U., & Megnet, R. (1968). Archives of Biochemistry and Biophysics, 126, 933–944. doi:10.1016/0003-9861(68)90487-6.CrossRefGoogle Scholar
  7. 7.
    Ganzhorn, A. J., Green, D. W., Hershey, A. D., Gould, R. M., & Plapp, B. V. (1987). The Journal of Biological Chemistry, 262, 3754–3761.Google Scholar
  8. 8.
    Larroy, C., Parés, X., & Biosca, J. A. (2002). European Journal of Biochemistry, 269, 5738–5745. doi:10.1046/j.1432-1033.2002.03296.x.CrossRefGoogle Scholar
  9. 9.
    Delneri, D., Gardner, D. C. J., & Oliver, S. G. (1999). Genetics, 153, 1591–1600.Google Scholar
  10. 10.
    Rodríguez, A., de la Cera, T., Herrero, P., & Moreno, F. (2001). The Biochemical Journal, 355, 625–631.Google Scholar
  11. 11.
    Lobo, Z., & Maitra, P. K. (1977). Archives of Biochemistry and Biophysics, 182, 639–645. doi:10.1016/0003-9861(77)90544-6.CrossRefGoogle Scholar
  12. 12.
    Herrero, P., Galíndez, J., Ruiz, N., Martínez-Campa, C., & Moreno, F. (1995). Yeast (Chichester, England), 11, 137–144. doi:10.1002/yea.320110205.CrossRefGoogle Scholar
  13. 13.
    Takahashi, T., Shimoi, H., & Ito, K. (2001). Molecular Genetics and Genomics, 265, 1112–1119. doi:10.1007/s004380100510.CrossRefGoogle Scholar
  14. 14.
    Thomas, D. S., Hossack, J. A., & Rose, A. H. (1978). Archives of Microbiology, 117, 239–245. doi:10.1007/BF00738541.CrossRefGoogle Scholar
  15. 15.
    Ingram, L. O., & Buttke, T. M. (1984). Advances in Microbial Physiology, 25, 253–300. doi:10.1016/S0065-2911(08)60294-5.CrossRefGoogle Scholar
  16. 16.
    Jiménez, J., & Benítez, T. (1987). Applied and Environmental Microbiology, 53, 1196–1198.Google Scholar
  17. 17.
    D’Amore, T., & Stewart, G. G. (1987). Enzyme and Microbial Technology, 9, 322–330. doi:10.1016/0141-0229(87)90053-6.CrossRefGoogle Scholar
  18. 18.
    Mishra, P., & Prasad, R. (1989). Applied Microbiology and Biotechnology, 30, 294–298. doi:10.1007/BF00256221.CrossRefGoogle Scholar
  19. 19.
    Yazawa, H., Iwahashi, H., & Uemura, H. (2007). Yeast (Chichester, England), 24, 551–560. doi:10.1002/yea.1492.CrossRefGoogle Scholar
  20. 20.
    Walker-Caprioglio, H. M., Casey, W. M., & Parks, L. W. (1990). Applied and Environmental Microbiology, 56, 2853–2857.Google Scholar
  21. 21.
    Grunwald-Raij, C., & Margalith, P. (1990). The Journal of Applied Bacteriology, 68, 247–252.Google Scholar
  22. 22.
    Novotny, C., Flieger, M., Panos, J., & Karst, F. (1992). Biotechnology and Applied Biochemistry, 15, 314–320.Google Scholar
  23. 23.
    Fujita, K., Matsuyama, A., Kobayashi, Y., & Iwahashi, H. (2004). Journal of Applied Microbiology, 97, 57–67. doi:10.1111/j.1365-2672.2004.02290.x.CrossRefGoogle Scholar
  24. 24.
    Fujita, K., Matsuyama, A., Kobayashi, Y., & Iwahashi, H. (2006). FEMS Yeast Res, 6, 744–750. doi:10.1111/j.1567-1364.2006.00040.x.CrossRefGoogle Scholar
  25. 25.
    Murata, Y., Homma, T., Kitagawa, E., Momose, Y., Sato, M. S., Odani, M., et al. (2006). Extremophiles, 10, 117–128. doi:10.1007/s00792-005-0480-1.CrossRefGoogle Scholar
  26. 26.
    Murata, Y., Watanabe, T., Sato, M., Momose, Y., Nakahara, T., Oka, S., et al. (2003). The Journal of Biological Chemistry, 278, 33185–33193. doi:10.1074/jbc.M300450200.CrossRefGoogle Scholar
  27. 27.
    Kitagawa, E., Takahashi, J., Momose, Y., & Iwahashi, H. (2002). Environmental Science & Technology, 36, 3908–3915. doi:10.1021/es015705v.CrossRefGoogle Scholar
  28. 28.
    Sirisattha, S., Momose, Y., Kitagawa, E., & Iwahashi, H. (2004). Water Research, 38, 61–70. doi:10.1016/j.watres.2003.08.027.CrossRefGoogle Scholar
  29. 29.
    Brauer, M. J., Huttenhower, C., Airoldi, E. M., Rosenstein, R., Matese, J. C., Gresham, D., et al. (2008). Molecular Biology of the Cell, 19, 352–367. doi:10.1091/mbc.E07-08-0779.CrossRefGoogle Scholar
  30. 30.
    Grey, M., Schmidt, M., & Brendel, M. (1996). Current Genetics, 29, 437–440.Google Scholar
  31. 31.
    Wehner, E. P., Rao, E., & Brendel, M. (1993). Molecular & General Genetics, 237, 351–358.Google Scholar
  32. 32.
    Degrassi, G., Uotila, L., Klima, R., & Venturi, V. (1999). Applied and Environmental Microbiology, 65, 3470–3472.Google Scholar
  33. 33.
    Larroy, C., Fernández, M. R., González, E., Parés, X., & Biosca, J. A. (2002). The Biochemical Journal, 361, 163–172. doi:10.1042/0264-6021:3610163.CrossRefGoogle Scholar
  34. 34.
    Aranda, A., Querol, A., & del Olmo, M. (2002). Archives of Microbiology, 177, 304–312. doi:10.1007/s00203-001-0391-1.CrossRefGoogle Scholar
  35. 35.
    Alexandre, H., Ansanay-Galeote, V., Dequin, S., & Blondin, B. (2001). FEBS Letters, 498, 98–103. doi:10.1016/S0014-5793(01)02503-0.CrossRefGoogle Scholar
  36. 36.
    Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., et al. (2000). Molecular Biology of the Cell, 11, 4241–4257.Google Scholar
  37. 37.
    Kitagawa, E., Momose, Y., & Iwahashi, H. (2003). Environmental Science & Technology, 37, 2788–2793. doi:10.1021/es026156b.CrossRefGoogle Scholar
  38. 38.
    Stromme, J. H. (1963). Biochemical Pharmacology, 12, 705–715. doi:10.1016/0006-2952(63)90046-7.CrossRefGoogle Scholar
  39. 39.
    Fliege, R., & Metzler, M. (1999). Chemico-Biological Interactions, 123, 85–103. doi:10.1016/S0009-2797(99)00123-4.CrossRefGoogle Scholar
  40. 40.
    Long, J. W., & Siegel, M. R. (1975). Chemico-Biological Interactions, 10, 383–394. doi:10.1016/0009-2797(75)90069-1.CrossRefGoogle Scholar
  41. 41.
    Kerns, W. D., Pavkov, K. L., Donofrio, D. J., Gralla, E. J., & Swenberg, J. A. (1983). Cancer Research, 43, 4382–4392.Google Scholar
  42. 42.
    Ma, T. H., & Harris, M. M. (1988). Mutation Research, 196, 37–59.Google Scholar
  43. 43.
    Wilkins, R. J., & MacLeod, H. D. (1976). Mutation Research, 36, 11–16. doi:10.1016/0027-5107(76)90016-6.Google Scholar
  44. 44.
    Heck, H. D., Casanova, M., & Starr, T. B. (1990). Critical Reviews in Toxicology, 20, 397–426. doi:10.3109/10408449009029329.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Daisuke Yasokawa
    • 1
  • Satomi Murata
    • 2
  • Yumiko Iwahashi
    • 3
  • Emiko Kitagawa
    • 4
  • Ryoji Nakagawa
    • 1
  • Tazusa Hashido
    • 1
  • Hitoshi Iwahashi
    • 5
  1. 1.Department of Food BiotechnologyHokkaido Food Processing Research CenterEbetsuJapan
  2. 2.Japan Pulp & Paper Research Institute, Inc.TsukubaJapan
  3. 3.National Food Research Institute (NFRI)National Agriculture and Food Research Organization (NARO)TsukubaJapan
  4. 4.Applied Science Business Unit, Technical Support Team, Array Group, Genomics Sequencing&Array Biz DepartmentRoche Diagnostics K. K.Minato-kuJapan
  5. 5.Health Technology Research Center (HTRC)National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations