Applied Biochemistry and Biotechnology

, Volume 160, Issue 6, pp 1760–1788 | Cite as

Ligninolytic Fungal Laccases and Their Biotechnological Applications

  • Daljit Singh Arora
  • Rakesh Kumar Sharma


Lignin is amorphous in nature, lacks stereoregularity, and is not susceptible to hydrolytic attack. Despite its resistant nature, it is however degraded by various microorganisms, particularly, white-rot fungi. Such fungi are capable of extracellular production of lignin peroxidase, manganese peroxidase, and laccase, the three major enzymes associated with ligninolysis. Though all white-rot fungi do not produce all the three enzymes, laccase occupies an important place in ligninolysis. Laccase belongs to a diverse group of enzymes called oxidoreductases and is also known as benzenediol: oxygen oxidoreductase. They have low substrate specificity. The copper-containing enzyme laccase has been detected in a variety of organisms such as bacteria, fungi, plants, and insects. Mostly, these are extracellular proteins, although intracellular laccases have also been detected in some fungi and insects. Fungal laccases are believed to play a variety of roles, such as, morphogenesis, pathogenesis, and lignin degradation. As an oxidase, laccase is used in many agricultural, industrial, and medicinal applications. Current investigations are focused on laccase-based biooxidation, biotransformation, biosensor, and enzymatic synthesis of organic compounds. By enhancing laccase production using different physiochemical parameters, better understanding of the mechanism for the reactions of interest, and optimizing the catalytic activity of laccase, it can be used in a better way in diverse fields of biotechnology.


Bioremediation Laccase Lignin Lignocellulosics White-rot fungi 


  1. 1.
    Dean, J. F. D., & Eriksson, K. E. (1992). Biotechnological modification of lignin structure and composition in forest trees. Holzforschung, 46, 135–147.Google Scholar
  2. 2.
    Alder, E. (1977). Lignin chemistry, past, present and future. Wood Science and Technology, 11, 169–218. doi: 10.1007/BF00365615.Google Scholar
  3. 3.
    Eriksson, K. E., Grunewald, A., & Vallander, L. (1980). Studies on growth conditions in wood for three white rot fungi and their cellulase-less mutants. Biotechnology and Bioengineering, 22, 363–376. doi: 10.1002/bit.260220210.Google Scholar
  4. 4.
    Råberg, U., Terziev, N., & Land, C. J. (2009). Early soft rot colonization of Scots sapwood pine in above-ground exposure. International Biodeterioration & Biodegradation, 63, 236–240. doi: 10.1016/j.ibiod.2007.10.005.Google Scholar
  5. 5.
    Rabinovich, M. L., Bolobova, A. V., & Vasil'chenko, L. G. (2004). Fungal decomposition of natural aromatic structures and xenobiotics: A review. Applied Biochemistry and Microbiology, 40, 1–17. doi: 10.1023/B:ABIM.0000010343.73266.08.Google Scholar
  6. 6.
    Nilsson, T., Daniel, G., Kirkk, T. K., & Obst, J. R. (1989). Chemistry and microscopy of wood decay by some higher ascomycetes. Holzforschung, 43, 11–18.Google Scholar
  7. 7.
    Blanchette, R. A., Held, B. W., Jurgens, J. A., McNew, D. L., Harrington, T. C., Duncan, S. M., et al. (2004). Wood destroying soft rot fungi in the historic expedition huts of antarctica. Applied and Environmental Microbiology, 70, 1328–1335. doi: 10.1128/AEM.70.3.1328-1335.2004.Google Scholar
  8. 8.
    Highley, T. L., & Illman, B. L. (1991). Progress in understanding how brown-rot fungi degrade cellulose. Biodeterioration Abstracts, 5, 231–244.Google Scholar
  9. 9.
    Kirk, T. K. (1975). Chemistry of lignin degradation by wood-destroying fungi. In W. Liese (Ed.), Biological transformation of wood by microorganisms. Berlin: Springer.Google Scholar
  10. 10.
    Jin, L., Nicholas, D. D., & Kirk, T. K. (1990). Mineralization of the methoxy carbon of isolated lignin by brown rot fungi under solid substrate conditions. Wood Science and Technology, 24, 263–276. doi: 10.1007/BF01153559.Google Scholar
  11. 11.
    Boyley, C. D., Kropp, B. R., & Reid, I. D. (1992). Solubilization and mineralization of lignin by white rot fungi. Applied and Environmental Microbiology, 58, 3217–3224.Google Scholar
  12. 12.
    Hatakka, A. (1994). Lignin-modifying enzymes from selected white rot fungi: Production and role in lignin degradation. FEMS Microbiology Reviews, 13, 125–135. doi: 10.1111/j.1574-6976.1994.tb00039.x.Google Scholar
  13. 13.
    Nerud, F., & Misurcova, Z. (1996). Distribution of ligninolytic enzymes in selected white rot fungi. Folia Microbiologica, 41, 264–266. doi: 10.1007/BF02814628.Google Scholar
  14. 14.
    Riva, S. (2006). Laccases: Blue enzymes for green chemistry. Trends in Biotechnology, 5, 219–225. doi: 10.1016/j.tibtech.2006.03.006.Google Scholar
  15. 15.
    Baldrian, P. (2004). Purification and characterization of laccase from the white rot fungus Daedalea quercina and decolorization of synthetic dyes by the enzyme. Applied Microbiology and Biotechnology, 63, 560–563. doi: 10.1007/s00253-003-1434-0.Google Scholar
  16. 16.
    Harkin, J. M., Larsen, M. J., & Obst, J. R. (1974). Use of syringaldazine for detection of laccase in sporophores of wood rotting fungi. Mycologia, 66, 469–476. doi: 10.2307/3758490.Google Scholar
  17. 17.
    Ferraroni, M., Duchi, I., Myasoedova, N. M., Leontievsky, A. A., Golovleva, L. A., Scozzafava, A., et al. (2005). Crystallization and preliminary structure analysis of the blue laccase from the ligninolytic fungus Panus tigrinus. Acta Crystallographica, F61, 205–207.Google Scholar
  18. 18.
    Morozova, O. V., Shumakovich, G. P., Gorbacheva, M. A., Shleev, S. V., & Yaropolov, A. I. (2007). Blue. Laccases. Biochemistry (Moscow), 72, 1136–1150. doi: 10.1134/S0006297907100112.Google Scholar
  19. 19.
    Pozdnyakova, N. N., Turkovskaya, O. V., Yudina, E. N., & Rodakiewicz-Nowak, Y. (2006). Yellow laccase from the fungus Pleurotus ostreatus D1. Purification and characterization. Applied Biochemistry and Microbiology, 42, 56–61.Google Scholar
  20. 20.
    Leontievsky, A. A., Vares, T., Lankinen, P., Shergill, J. K., Pozdnyakova, N. N., Myasoedova, N. M., et al. (1997). Blue and yellow laccases of ligninolytic fungi. FEMS Microbiology Letters, 156, 9–14.Google Scholar
  21. 21.
    Palmieri, G., Cennamo, G., Faraco, V., Amoresano, A., Sannia, G., & Giardina, P. (2003). Atypical laccase isoenzymes from copper supplemented Pleurotus ostreatus cultures. Enzyme and Microbial Technology, 33, 220–230. doi: 10.1016/S0141-0229(03)00117-0.Google Scholar
  22. 22.
    Jordaan, J., Pletschke, B. I., & Leukes, W. D. (2004). Purification and partial characterization of a thermostable laccase from an unidentified basidiomycete. Enzyme and Microbial Technology, 34, 635–641. doi: 10.1016/j.enzmictec.2004.02.003.Google Scholar
  23. 23.
    Ranocha, P., Chabannes, M., Chamayou, S., Danoun, S., Jauneau, A., Boudet, A. M., et al. (2002). Laccase down-regulation causes alteration in phenolic metabolism and cell wall structure in poplar. Plant Physiology, 129, 1–11. doi: 10.1104/pp.010988.Google Scholar
  24. 24.
    De’Souza, T. M., Boomminathan, K., & Reddy, C. A. (1996). Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR. Applied and Environmental Microbiology, 62, 3739–3744.Google Scholar
  25. 25.
    Palaez, F., Martínez, M. J., & Martínez, A. T. (1995). Screening of 68 species of basidiomycetes involved in lignin degradation. Mycological Research, 99, 37–42. doi: 10.1016/S0953-7562(09)80313-4.Google Scholar
  26. 26.
    Ruttimann, C., Schwember, E., Salas, L., Cullen, D., & Vicuna, R. (1992). Ligninolytic enzymes of the white-rot basidiomycetes Phlebia brevispora and Ceriporiopsis subvermispora. Biotechnology and Applied Biochemistry, 16, 64–76.Google Scholar
  27. 27.
    Jimenez, M., Gonzalez, A. E., Martinez, M. J., Martinez, A. T., & Dale, B. E. (1991). Screening of yeasts isolated from decayed wood for lignocellulose degrading enzyme activities. Mycological Research, 95, 1299–1302. doi: 10.1016/S0953-7562(09)80578-9.Google Scholar
  28. 28.
    Williamson, P. R. (1994). Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: Identification as a laccase. Journal of Bacteriology, 176, 656–664.Google Scholar
  29. 29.
    Svobodova, K. (2005). The implication of ligninolytic enzymes in the decolorization of synthetic dyes by white rot fungus Irpex lacteus. Ph.D. Thesis, Charles University, Prague, Czech Republic.Google Scholar
  30. 30.
    Zhu, X. D., Gibbons, J., Garcia-Rivera, J., Casadevall, A., & Williamson, P. R. (2001). Laccase of Cryptococcus neoformans is a cell wall-associated virulence factor. Infection and Immunity, 69, 5589–5596. doi: 10.1128/IAI.69.9.5589-5596.2001.Google Scholar
  31. 31.
    Holker, U., Dohse, J., & Hofer, M. (2002). Extracellular laccase in ascomycetes Trichoderma atroviride and Trichoderma harzianum. Folia Microbiologica, 47, 423–427. doi: 10.1007/BF02818702.Google Scholar
  32. 32.
    Cairney, J. W. D., & Burke, R. M. (1998). Do ecto- and ericoid mycorrhizal fungi produce peroxidase activity? Mycorrhiza, 8, 61–65. doi: 10.1007/s005720050213.Google Scholar
  33. 33.
    Burke, R. M., & Cairney, J. W. G. (2002). Laccase and other polyphenol oxidases in ecto- and ericoid mycorrhizal fungi. Mycorrhiza, 12, 105–116.Google Scholar
  34. 34.
    Chen, D. M., Bastias, B. A., Taylor, A. F. S., & Cairney, J. W. G. (2003). Identification of laccase-like genes in ectomycorrhizal basidiomycetes and transcriptional regulation by nitrogen in Piloderma byssinum. The New Phytologist, 157, 547–554. doi: 10.1046/j.1469-8137.2003.00687.x.Google Scholar
  35. 35.
    Luis, P., Walther, G., Kellner, H., Martin, F., & Buscot, F. (2004). Diversity of laccase genes from basidiomycetes in a forest soil. Soil Biology & Biochemistry, 36, 1025–1036. doi: 10.1016/j.soilbio.2004.02.017.Google Scholar
  36. 36.
    Gunther, H., Perner, B., & Grammes, G. (1998). Activities of phenol oxidizing enzymes of ectomycorrhizal fungi in axenic culture and in symbiosis with Scots pine (Pinus sylvestris L.). Journal of Basic Microbiology, 38, 197–206. doi: 10.1002/(SICI)1521-4028(199807)38:3<197::AID-JOBM197>3.0.CO;2-W.Google Scholar
  37. 37.
    Timonen, S., & Sen, R. (1998). Heterogeneity of fungal and plant enzyme expression in intact Scots pine Suillus bovines and Paxillus involutus mycorrhizospheres developed in natural forest humus. The New Phytologist, 138, 355–366. doi: 10.1046/j.1469-8137.1998.00103.x.Google Scholar
  38. 38.
    Suzuki, T., Endo, K., Ito, M., Tsujibo, H., Miyamoto, K., & Inamori, Y. (2003). A thermostable laccase from Streptomyces lavendulae REN-7: Purification, characterization, nucleotide sequence, and expression. Bioscience, Biotechnology, and Biochemistry, 67, 2167–2175. doi: 10.1271/bbb.67.2167.Google Scholar
  39. 39.
    Claus, H. (2003). Laccases and their occurrence in prokaryotes. Archives of Microbiology, 179, 145–150.Google Scholar
  40. 40.
    Givaudan, A., Effosse, A., Faure, D., Potier, P., Bouillant, M. L., & Bally, R. (1993). Polyphenol oxidase from Azospirillum lipoferum isolated from rice rhizosphere: Evidence for laccase activity in non-motile strains of A. lipoferum. FEMS Microbiology Letters, 108, 205–210. doi: 10.1111/j.1574-6968.1993.tb06100.x.Google Scholar
  41. 41.
    Alexandre, G., & Zhulin, I. B. (2000). Laccases are wide spread in bacteria. Trends in Biotechnology, 18, 41–42. doi: 10.1016/S0167-7799(99)01406-7.Google Scholar
  42. 42.
    Enguita, F. J., Martins, L. O., Henriques, A. O., & Carrondo, M. A. (2003). Crystal structure of a bacterial endospore coat component: A laccase with enhanced thermostability properties. The Journal of Biological Chemistry, 278, 19416–19425. doi: 10.1074/jbc.M301251200.Google Scholar
  43. 43.
    Galai, S., Limam, F., & Marzouki, M. N. (2008). A new Stenotrophomonas maltophilia strain producing laccase. Use in decolorization of synthetic dyes. Applied Biochemistry and Biotechnology, in press.Google Scholar
  44. 44.
    Xu, F. (1999). Laccase. In M. C. Flickinger & S. W. Drew (Eds.), The encyclopedia of bioprocessing technology: Fermentation, biocatalysis and bioseparation (pp. 1545–1554). New York: Wiley.Google Scholar
  45. 45.
    Bailey, M. R., Woodard, S. L., Callawy, E., Beifuss, K., Magallanes-Lundback, M., Lane, J., et al. (2004). Improved recovery of active recombinant laccase from maize seed. Applied Microbiology and Biotechnology, 63, 390–397. doi: 10.1007/s00253-003-1362-z.Google Scholar
  46. 46.
    Dittmer, J. K., Patel, N. J., & Dhawale, S. W. (1997). Production of multiple laccase isoforms by Phanerochaete chrysosporium grown under nutrient sufficiency. FEMS Microbiology Letters, 149, 65–70. doi: 10.1111/j.1574-6968.1997.tb10309.x.Google Scholar
  47. 47.
    Nagai, M., Kawata, M., Watanabe, H., Ogawa, M., Saito, K., Takesawa, T., et al. (2003). Important role of fungal intracellular laccase for melanin synthesis: Purification and characterization of an intracellular laccase from Lentinula edodes fruit bodies. Microbiology, 149, 2455–2462. doi: 10.1099/mic.0.26414-0.Google Scholar
  48. 48.
    Min, K. L., Kim, Y. H., Kim, Y. W., Jung, H. S., & Hah, Y. C. (2001). Characterization of a novel laccase produced by the wood-rotting fungus Phellinus ribis. Archives of Biochemistry and Biophysics, 392, 279–286. doi: 10.1006/abbi.2001.2459.Google Scholar
  49. 49.
    De Souza, C. G. M., & Peralta, R. M. (2003). Purification and characterization of the main laccase produced by the white-rot fungus Pleurotus pulmonarius on wheat bran solid state medium. Journal of Basic Microbiology, 43, 278–286. doi: 10.1002/jobm.200390031.Google Scholar
  50. 50.
    Yaver, D. S., Xu, F., Golightly, E. J., Brown, K. M., Brown, S. H., Rey, M. W., et al. (1996). Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Applied and Environmental Microbiology, 62, 834–841.Google Scholar
  51. 51.
    Palmieri, G., Giardina, P., Bianco, C., Scaloni, A., Capassoi, A., & Sannia, G. (1997). A novel white laccase from Pleurotus ostreatus. The Journal of Biological Chemistry, 272, 31301–31307. doi: 10.1074/jbc.272.50.31301.Google Scholar
  52. 52.
    Thurston, C. F. (1994). The structure and function of fungal laccases. Microbiology, 140, 19–26.Google Scholar
  53. 53.
    Ng, T. B., & Wang, H. X. (2004). A homodimeric laccase with unique characteristics from the yellow mushroom Cantharellus cibarius. Biochemical and Biophysical Research Communications, 313, 37–41. doi: 10.1016/j.bbrc.2003.11.087.Google Scholar
  54. 54.
    Shleev, S. V., Khan Ir, G., Morozova, O. V., Mazhugo, Y. M., Khalunina, A. S., & Yaropolov, A. I. (2004). Phenylpyrazolones, novel oxidoreductase redox mediators for degradation of xenobiotics. Applied Biochemistry and Microbiology, 40, 140–145. doi: 10.1023/ Scholar
  55. 55.
    Kersten, P. J., Kalyanarman, B., Hammel, K. E., & Reinhammer, B. (1990). Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzene. The Biochemical Journal, 268, 475–480.Google Scholar
  56. 56.
    Higuchi, T. (1990). Lignin biochemistry: Biosynthesis and biodegradation. Wood Science and Technology, 24, 23–63. doi: 10.1007/BF00225306.Google Scholar
  57. 57.
    Kirk, T. K., Schultz, E., Connors, W. J., Lorenz, L. F., & Zeikus, J. G. (1978). Influence of culture parameters on lignin metabolism on Phanerochaete chrysosporium. Archives of Microbiology, 117, 277–285. doi: 10.1007/BF00738547.Google Scholar
  58. 58.
    Milstein, O., Huttermann, A., Frund, R., & Lüdemann, H. D. (1994). Enzymatic copolymerization of lignin with low-molecular mass compounds. Applied Microbiology and Biotechnology, 40, 760–767. doi: 10.1007/BF00173342.Google Scholar
  59. 59.
    Xu, F. (1996). Oxidation of phenols, anilines and benzene thiols by fungal laccases: Correlation between activity and redox potentials as well as halide inhibition. Biochemistry, 35, 7608–7614. doi: 10.1021/bi952971a.Google Scholar
  60. 60.
    Blaich, R., & Esser, K. (1975). Function of enzymes in wood destroying fungi. 2. Multiple forms of laccase in white rot fungi. Archives of Microbiology, 103, 271–277. doi: 10.1007/BF00436360.Google Scholar
  61. 61.
    Kandelbauer, A., Maute, O., Kessler, R. W., Erlacher, A., & Gübitz, G. M. (2004). Study of dye decolorization in an immobilized laccase enzyme-reactor using online spectroscopy. Biotechnology and Bioengineering, 87, 552–563. doi: 10.1002/bit.20162.Google Scholar
  62. 62.
    Xu, F., Li, K., & Elder, T. J. (2002). N-Hydroxy mediated laccase biocatalysis: Recent progress on its mechanism and future prospects of its application. Progress in Biotechnology, 21, 89–104. doi: 10.1016/S0921-0423(02)80011-9.Google Scholar
  63. 63.
    Ferraroni, M., Myasoedova, N. M., Schmatchenko, V., Leontievsky, A. A., Golovleva, L. A., Scozzafava, A., et al. (2007). Crystal structure of a blue laccase from Lentinus tigrinus: Evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. BMC Structural Biology, 7, 60. doi: 10.1186/1472-6807-7-60.Google Scholar
  64. 64.
    Wong, D. W. S. (2008). Structure and action mechanism of ligninolytic enzymes. Applied Biochemistry and Biotechnology, 157, 174–209. doi: 10.1007/s12010-008-8279-z.Google Scholar
  65. 65.
    Palmieri, G., Giardina, P., Bianco, C., Fontanella, B., & Sannia, G. (2000). Copper induction of laccase isoenzymes in ligninolytic fungus Pleurotus ostreatus. Applied and Environmental Microbiology, 66, 920–924. doi: 10.1128/AEM.66.3.920-924.2000.Google Scholar
  66. 66.
    Martinez, D., Larrondo, L. F., Putnam, N., Gelpke, M. D. S., Huang, K., Chapman, J., et al. (2004). Genome sequence of lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature Biotechnology, 22, 695–700. doi: 10.1038/nbt967.Google Scholar
  67. 67.
    Larrondo, L. F., Salas, L., Melo, F., Vicuña, R., & Cullen, D. (2003). A novel extracellular multicopper oxidase from Phanerochaete chrysosporium with ferroxidase activity. Applied and Environmental Microbiology, 69, 6257–6263. doi: 10.1128/AEM.69.10.6257-6263.2003.Google Scholar
  68. 68.
    Dedeyan, B., Klonowska, A., & Tagger, S. (2000). Biochemical and molecular characterization of a laccase from Marasmius quercophilus. Applied and Environmental Microbiology, 66, 925–929. doi: 10.1128/AEM.66.3.925-929.2000.Google Scholar
  69. 69.
    Dion, W. M. (1951). Production and properties of a polyphenol oxidase from the fungus Polyporus versicolor. Canadian Journal of Botany, 30, 9–20. doi: 10.1139/b52-002.Google Scholar
  70. 70.
    Westermark, U., & Eriksson, K. E. (1974). Carbohydrate-dependent enzymic quinone reduction during lignin degradation. Acta Chemica Scandinavica Series B: Organic Chemistry and Biochemistry, 28, 209–214.Google Scholar
  71. 71.
    Arora, D. S., & Sandhu, D. K. (1985). Survey of some Indian soils for laccase producing fungi and their lignin degrading ability. Proceedings of the Indiana Academy of Sciences, 94, 567–574.CrossRefGoogle Scholar
  72. 72.
    Field, J. A., De Jong, E. D., Costa, G. F., & De Bont, J. A. M. (1992). Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Applied and Environmental Microbiology, 58, 2219–2226.Google Scholar
  73. 73.
    Kiiskinen, L. L., Ratto, M., & Kruus, K. (2004). Screening for novel laccase producing microbes. Journal of Applied Microbiology, 97, 640–645. doi: 10.1111/j.1365-2672.2004.02348.x.Google Scholar
  74. 74.
    Hiroi, T., & Eriksson, K. E. (1976). Microbiological degradation of lignin. 1. Influence of cellulose on the degradation of lignins by the white rot fungus Pleurotus ostreatus. Svensk Papperstidning, 5, 157–161.Google Scholar
  75. 75.
    Guillen, F., Martinez, A. T., & Martinez, M. J. (1992). Substrates specificity and properties of the aryl alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. European Journal of Biochemistry, 209, 603–611. doi: 10.1111/j.1432-1033.1992.tb17326.x.Google Scholar
  76. 76.
    Childs, R. E., & Bardsley, W. G. (1975). The steady-state kinetics of peroxidase with 2,2′-azino-di-(3-ethylbenzthiazoline-6-sulphonic acid) as chromogen. The Biochemical Journal, 145, 93–103.Google Scholar
  77. 77.
    Eggert, C., Temp, U., & Eriksson, K. E. L. (1996). The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: Purification and characterization of laccase. Applied and Environmental Microbiology, 62, 1151–1158.Google Scholar
  78. 78.
    Geng, X., Li, K., & Xu, F. (2004). Investigation of hydroxamic acids as laccase-mediators for pulp bleaching. Applied Microbiology and Biotechnology, 64, 493–496. doi: 10.1007/s00253-003-1475-4.Google Scholar
  79. 79.
    Ryan, S., Schnitzhofer, W., & Tranov, T. (2003). An acid-stable laccase from Sclerotium rolfsii with potential for wool dye decolorization. Enzyme and Microbial Technology, 33, 766–774. doi: 10.1016/S0141-0229(03)00162-5.Google Scholar
  80. 80.
    Paszczynski, A., Huynk, V. B., & Crawford, R. L. (1985). Enzymatic activities of an extracellular manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiology Letters, 29, 37–41. doi: 10.1111/j.1574-6968.1985.tb00831.x.Google Scholar
  81. 81.
    Rodriguez, A., Falcon, M. A., Carnicero, A., Perestlo, F., Fuent, G. D., & Trojanowski, J. (1996). Laccase activities of Penicillium chrysogenum in relation to lignin degradation. Applied Microbiology and Biotechnology, 45, 399–403. doi: 10.1007/s002530050702.Google Scholar
  82. 82.
    Saparrat, M. C. N., Guillen, F., Arambarri, A. M., Martínez, A. T., & Martínez, M. J. (2002). Induction, isolation, and characterization of two laccases from the white-rot basidiomycete Coriolopsis rigida. Applied and Environmental Microbiology, 68, 1534–1540. doi: 10.1128/AEM.68.4.1534-1540.2002.Google Scholar
  83. 83.
    Harkin, J., & Obst, J. R. (1973). Syringaldazine an effective reagent for detecting laccase and peroxidase in fungi. Experientia, 29, 381–508. doi: 10.1007/BF01926734.Google Scholar
  84. 84.
    Galliano, H., Gas, G., & Boudet, A. M. (1990). Lignin biodegradation by cultures of Rigidoporus lignosus in solid state conditions. FEMS Microbiology Letters, 67, 295–300. doi: 10.1111/j.1574-6968.1990.tb04036.x.Google Scholar
  85. 85.
    Ullah, M. A., Bedford, C. T., & Evans, C. S. (2000). Reactions of pentachlorophenol with laccase from Coriolus versicolor. Applied Microbiology and Biotechnology, 53, 230–234. doi: 10.1007/s002530050013.Google Scholar
  86. 86.
    Temp, U., & Eggert, C. (1999). Novel interaction between laccase and collobiose dehydrogenase during pigment synthesis in the white rot fungi Pycnoporus cinnabarinus. Applied and Environmental Microbiology, 65, 389–395.Google Scholar
  87. 87.
    Arakane, Y., Muthukrishnan, S., Beeman, R. W., Kanost, M. R., & Kramer, K. J. (2005). Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. Proceedings of the National Academy of Sciences of the United States of America, 102, 11337–11342. doi: 10.1073/pnas.0504982102.Google Scholar
  88. 88.
    Frases, S., Chaskes, S., Dadachova, E., & Casadevall, A. (2006). Induction by Klebsiella aerogenes of a melanin-like pigment in Cryptococcus neoformans. Applied and Environmental Biotechnology, 72, 1542–1550.Google Scholar
  89. 89.
    Eisenman, H. C., Mues, M., Weber, S. E., Frases, S., Chaskes, S., Gerfen, G., et al. (2007). Cryptococcus neoformans laccase catalyses melanin synthesis from both d- and l-DOPA. Microbiology, 153, 3954–3962. doi: 10.1099/mic.0.2007/011049-0.Google Scholar
  90. 90.
    Sugareva, V., Härtl, A., Brock, M., Hübner, K., Rohde, M., Heinekamp, T., et al. (2006). Characterisation of the laccase-encoding gene abr2 of the dihydroxynaphthalene-like melanin gene cluster of Aspergillus fumigatus. Archives of Microbiology, 186, 345–355. doi: 10.1007/s00203-006-0144-2.Google Scholar
  91. 91.
    Clutterbuck, A. J. (1972). Absence of laccase from yellow spored mutants of Aspergillus nidulans. Journal of General Microbiology, 70, 423–435.Google Scholar
  92. 92.
    Hermann, T. E., Kurtz, M. B., & Champe, S. P. (1983). Laccase localized in Hulle cells and cleistothecial primordial of Aspergillus nidulans. Journal of Bacteriology, 154, 955–964.Google Scholar
  93. 93.
    Leatham, G. F., & Stahmann, M. A. (1981). Studies on the laccase of Lentinula edodes: Specificity localization and association with the development of fruiting bodies. Journal of General Microbiology, 125, 147–157.Google Scholar
  94. 94.
    Worrell, J. J., Chet, I., & Hüttermann, A. (1986). Association of rhizomorph formation with laccase activity in Armillaria spp. Journal of General Microbiology, 132, 2527–2533.Google Scholar
  95. 95.
    Robene-Saustrade, I., Lung-Escarmant, B., Bonno, J. J., & Taris, B. (1992). Identification and partial characterization of an extracellular manganese-dependent phenol oxidase in Armillaria ostoyae and Armillaria mellea. European Journal of Forest Pathology, 22, 227–236. doi: 10.1111/j.1439-0329.1992.tb00787.x.Google Scholar
  96. 96.
    Ohga, S., Cho, N. S., Thurston, C. F., & Wood, D. A. (2000). Transcriptional regulation of laccase and cellulase in relation to fruit body formation in the mycelium of Lentinula edodes on a sawdust-based substrate. Mycoscience, 41, 149–153. doi: 10.1007/BF02464324.Google Scholar
  97. 97.
    Chen, S., Ge, W., & Buswell, J. A. (2004). Biochemical and molecular characterization of a laccase from the edible straw mushroom, Volvariella volvacea. European Journal of Biochemistry, 271, 318–328. doi: 10.1046/j.1432-1033.2003.03930.x.Google Scholar
  98. 98.
    Wood, D. (1980). Production, purification and properties of extracellular laccase of Agaricus bisporus. Journal of General Microbiology, 117, 327–338.Google Scholar
  99. 99.
    De Vries, O. M. H., Kooistra, W. H. C. F., & Wessels, G. M. (1986). Formation of extracellular laccase by Schizophyllum commune dikaryon. Holzforschung, 46, 135–147.Google Scholar
  100. 100.
    Aisemberg, G. O., Grorewold, E., Taccioli, G. E., & Judewicz, N. (1989). A major transcript in the response of Neurospora crassa to protein synthesis inhibition by cycloheximide. Experimental Mycology, 13, 121–128. doi: 10.1016/0147-5975(89)90017-0.Google Scholar
  101. 101.
    Rigling, D., & Van Alfen, N. K. (1991). Regulation of laccase biosynthesis in plant pathogenic fungus Cryphonectria parasitica by double stranded RNA. Journal of Bacteriology, 173, 8000–8003.Google Scholar
  102. 102.
    Kim, D. H., Rigling, D., Zhang, L., & Van Alfen, N. K. (1995). A new extracellular laccase of Cryphonectria parasitica is revealed by deletion of Lac 1. Molecular Plant–Microbe Interactions, 8, 259–266.Google Scholar
  103. 103.
    Binz, T., & Canevascini, G. (1996). Differential production of extracellular laccase by Dutch elm disease pathogen Ophiostoma ulmi and O. novo-ulmi. Mycological Research, 100, 1060–1064. doi: 10.1016/S0953-7562(96)80213-9.Google Scholar
  104. 104.
    Brasier, C. M. (1991). Ophiostoma novo-ulmi species causative agent of current Dutch elm disease pandemic. Mycopathologia, 115, 151–161. doi: 10.1007/BF00462219.Google Scholar
  105. 105.
    Waterman, S. R., Hacham, M., Panepinto, J., Hu, G., Shin, S., & Williamson, P. R. (2007). Cell wall targeting of laccase of Cryptococcus neoformans during infection of mice. Infection and Immunity, 75, 714–722. doi: 10.1128/IAI.01351-06.Google Scholar
  106. 106.
    Litvintseva, A. P., & Henson, J. M. (2002). Characterization of two laccase genes of Gaeumannomyces graminis var. graminis and their differential transcription in melanin mutants and wild type. Mycological Research, 106, 808–814. doi: 10.1017/S0953756202005841.Google Scholar
  107. 107.
    Ander, P., & Eriksson, K. E. (1976). The importance of phenol oxidase activity in lignin degradation by the white rot fungus Sporotrichum pulverulentum. Archives of Microbiology, 109, 1–8. doi: 10.1007/BF00425105.Google Scholar
  108. 108.
    Bermek, H., Li, K., & Eriksson, K. E. (1998). Laccase-less mutants of the white rot fungus Pycnoporus cinnabarinus cannot delignify kraft pulp. Journal of Biotechnology, 66, 117–124. doi: 10.1016/S0168-1656(98)00091-1.Google Scholar
  109. 109.
    Garzillo, A. M. V., Colao, M. C., Caruso, C., Caporale, C., Celletti, D., & Buonocore, V. (1998). Laccase from the white rot fungus Trametes trogii. Applied Microbiology and Biotechnology, 49, 545–551. doi: 10.1007/s002530051211.Google Scholar
  110. 110.
    Bourbonnais, R., & Paice, M. G. (1990). Oxidation of non-phenolic substrates: An expanded role for laccase in lignin biodegradation. FEBS Letters, 267, 99–102. doi: 10.1016/0014-5793(90)80298-W.Google Scholar
  111. 111.
    Srinivasan, C., D’souza, T. M., Boominathan, K., & Reddy, C. A. (1995). Demonstration of laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F-1767. Applied and Environmental Microbiology, 61, 4274–4277.Google Scholar
  112. 112.
    Sethuraman, A., Akin, D. E., & Eriksson, K. E. L. (1999). Production of ligninolytic enzymes and synthetic lignin mineralization by birds nest fungus Cyathus stercoreus. Applied Microbiology and Biotechnology, 52, 689–697. doi: 10.1007/s002530051580.Google Scholar
  113. 113.
    Arora, D. S., & Sandhu, D. K. (1985). Laccase production and wood degradation by a white rot fungus Daedalea flavida. Enzyme and Microbial Technology, 7, 405–408. doi: 10.1016/0141-0229(85)90131-0.Google Scholar
  114. 114.
    Arora, D. S., & Gill, P. K. (2001). Effects of various media and supplements on laccase production by some white rot fungi. Bioresource Technology, 77, 89–91. doi: 10.1016/S0960-8524(00)00114-0.Google Scholar
  115. 115.
    Arora, D. S., & Sandhu, D. K. (1987). Decomposition of angiospermic wood sawdust and laccase production by two Pleurotus species. Journal of Basic Microbiology, 27, 179–184. doi: 10.1002/jobm.3620270402.Google Scholar
  116. 116.
    Fortina, M. G., Acquati, A., Rossi, P., Manachini, P. L., & Di Gennaro, C. (1996). Production of laccase by Botrytis cinerea and fermentation studies with strain 226. Journal of Industrial Microbiology, 17, 69–72. doi: 10.1007/BF01570044.Google Scholar
  117. 117.
    Dhaliwal, R. P. S., Garcha, H. S., & Khanna, P. K. (1992). High laccase producing mutants of Pleurotus florida. World Journal of Microbiology & Biotechnology, 8, 39–41. doi: 10.1007/BF01200681.Google Scholar
  118. 118.
    Nagai, M., Sato, T., Watanabe, H., Saito, K., Kawata, M., & Enei, H. (2002). Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes. Applied Microbiology and Biotechnology, 60, 327–335. doi: 10.1007/s00253-002-1109-2.Google Scholar
  119. 119.
    Reader, U., & Broda, P. (1985). Rapid preparation of DNA from filamentous fungi. Letters in Applied Microbiology, 1, 17–20. doi: 10.1111/j.1472-765X.1985.tb01479.x.Google Scholar
  120. 120.
    Kim, Y., Yeo, S., Song, H. G., & Choi, H. T. (2008). Enhanced expression of laccase during the degradation of endocrine disrupting chemicals in Trametes versicolor. Journal of Microbiology (Seoul, Korea), 46, 402–407. doi: 10.1007/s12275-007-0236-y.Google Scholar
  121. 121.
    Liu, W., Chao, Y., Liu, S., Bao, H., & Qian, S. (2003). Molecular cloning and characterization of a laccase gene from the basidiomycete Fomes lignosus and expression in Pichia pastoris. Applied Microbiology and Biotechnology, 63, 174–181. doi: 10.1007/s00253-003-1398-0.Google Scholar
  122. 122.
    Susla, M., Novotnỳ, C., & Svobodová, K. (2007). The implication of Dichomitus squalens laccase isoenzymes in dye decolorization by immobilized fungal cultures. Bioresource Technology, 98, 2109–2115. doi: 10.1016/j.biortech.2006.08.007.Google Scholar
  123. 123.
    Ong, E., Pollock, W. B. R., & Smith, M. (1997). Cloning and sequence analysis of two laccase complementary DNAs from the ligninolytic basidiomycete Trametes versicolor. Gene, 196, 113. doi: 10.1016/S0378-1119(97)00215-1.Google Scholar
  124. 124.
    Yaver, D. S., & Golightly, E. J. (1996). Cloning and characterization of three laccase genes from the white rot basidiomycetes Trametes villosa: Genomic organization of the laccase gene family. Gene, 181, 95–102. doi: 10.1016/S0378-1119(96)00480-5.Google Scholar
  125. 125.
    Wahleithner, J. A., Xu, F., Brown, K. M., Brown, S. H., Golightly, E. J., Halkier, T., et al. (1996). The identification and characterization of four laccase from the plant pathogenic fungus Rhizoctonia solani. Current Genetics, 29, 395–403. doi: 10.1007/BF02208621.Google Scholar
  126. 126.
    Moldes, D., Lorenzo, M., & Sanroman, M. A. (2004). Different proportions of laccase isoenzymes produced by submerged cultures of Trametes versicolor grown on lignocellulosic waste. Biotechnology Letters, 26, 327–330. doi: 10.1023/ Scholar
  127. 127.
    Mansur, M., Suarez, T., Fernandez-Larrea, J., Brizuela, M. A., & Gonzalez, A. E. (1997). Identification of a laccase gene family in the new lignin degrading basidiomycete CECT 20197. Applied and Environmental Microbiology, 63, 2637–2646.Google Scholar
  128. 128.
    Okano, K., Iida, Y., Samurai, M., Prasetya, B., Usagawa, T., & Watanabe, T. (2006). Comparison of in-vitro digestibility and chemical composition among sugarcane bagasses treated by four white rot fungi. Animal Science Journal, 77, 308–313. doi: 10.1111/j.1740-0929.2006.00353.x.Google Scholar
  129. 129.
    Arora, D. S., & Sharma, R. K. (2009). Comparative ligninolytic potential of Phlebia species and their role in improvement of in vitro digestibility of wheat straw. Journal of Animal and Feed Sciences, 18, 151–161.Google Scholar
  130. 130.
    Kirk, T. K. (1983). Degradation and conversion of lignocelluloses. In J. E. Smith, D. R. Berry & B. Kristiansen (Eds.), The filamentous fungi (Vol. 4, pp. 266–295). London: Edward Arnold.Google Scholar
  131. 131.
    Kristensen, J. B., Thygesen, L. G., Felby, C., Jørgensen, H., & Elder, T. (2008). Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnology for Biofuels, 1, 5. doi: 10.1186/1754-6834-1-5.Google Scholar
  132. 132.
    Jonsson, L. J., Palmqvist, E., Nilvebrant, N. O., & Hahn-Hägerdal, B. (1998). Detoxification of wood hydrolysates with laccase and peroxidase from the white rot fungus Trametes versicolor. Applied Microbiology and Biotechnology, 49, 691–697. doi: 10.1007/s002530051233.Google Scholar
  133. 133.
    Widsten, P., & Kandelbauer, A. (2008). Laccase applications in the forest products industry: A review. Enzyme and Microbial Technology, 42, 293–307. doi: 10.1016/j.enzmictec.2007.12.003.Google Scholar
  134. 134.
    Mendonça, R. T., Jara, J. F., González, V., Elissetche, J. P., & Freer, J. (2008). Evaluation of the white-rot fungi Ganoderma australe and Ceriporiopsis subvermispora in biotechnological applications. Journal of Industrial Microbiology & Biotechnology, 35, 1323–1330. doi: 10.1007/s10295-008-0414-x.Google Scholar
  135. 135.
    Wong, K. K. Y., Richardson, J. D., & Mansfield, S. D. (2000). Enzymatic treatment of mechanical pulp fibres for improving paper making properties. Biotechnology Progress, 16, 1025–1029. doi: 10.1021/bp000064d.Google Scholar
  136. 136.
    Bajpai, P. (1999). Application of enzymes in the pulp and paper industry. Biotechnology Progress, 15, 147–157. doi: 10.1021/bp990013k.Google Scholar
  137. 137.
    Scott, G. M., Lentz, M., Akhtar, M., Sykes, M., & Abubakr, S. (1995). Environmental aspects of biosulfite pulping. Proceedings of 1995 international environmental conference (pp. 1155–1161). Atlanta: TAPPI.Google Scholar
  138. 138.
    Call, H. P. (1994). Process for modifying, breaking down or bleaching lignin, materials containing or like substances. World patent application WO 94/29510.Google Scholar
  139. 139.
    Wesenberg, D., Kyriakides, I., & Agathos, S. N. (2003). White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology Advances, 22, 161–187. doi: 10.1016/j.biotechadv.2003.08.011.Google Scholar
  140. 140.
    Liu, W., Chao, Y., Yang, X., Bao, H., & Qian, S. (2004). Biodecolorization of azo, anthraquinonic and triphenylmethane dyes by white-rot fungi and a laccase-secreting engineered strain. Journal of Industrial Microbiology & Biotechnology, 31, 127–132. doi: 10.1007/s10295-004-0123-z.Google Scholar
  141. 141.
    Swamy, J., & Ramsay, J. A. (1999). Effects of Mn2+ and NH4+ concentration on laccase and MnP production and amaranth decoloration by Trametes versicolor. Applied Microbiology and Biotechnology, 51, 391–396. doi: 10.1007/s002530051408.Google Scholar
  142. 142.
    Kirby, N., Marchant, R. M., & Mullan, G. (2000). Decolorization of synthetic textile dyes by Phlebia tremellosa. FEMS Microbiology Letters, 188, 93–96. doi: 10.1111/j.1574-6968.2000.tb09174.x.Google Scholar
  143. 143.
    Gill, P. K., Arora, D. S., & Chander, M. (2002). Biodecolorisation of azo and triphenyl-methane dyes by Dichomitus squalens and Phlebia spp. Journal of Industrial Microbiology & Biotechnology, 28, 201–203. doi: 10.1038/sj.jim.7000222.Google Scholar
  144. 144.
    Chander, M., & Arora, D. S. (2007). Evaluation of some white rot fungi for their potential to decolorise industrial dyes. Dyes and Pigments, 72, 192–198. doi: 10.1016/j.dyepig.2005.08.023.Google Scholar
  145. 145.
    Murugesan, K., Yang, I. H., Kim, Y. M., Jeon, J. R., & Chang, Y. S. (2009). Enhanced transformation of malachite green by laccase of Ganoderma lucidum in the presence of natural phenolic compounds. Applied Microbiology and Biotechnology, 82, 341–350. doi: 10.1007/s00253-008-1819-1.Google Scholar
  146. 146.
    Ciullini, I., Tilli, S., Scozzafava, A., & Brigant, F. (2008). Fungal laccase, cellobiose dehydrogenase, and chemical mediators: Combined actions for the decolorization of different classes of textile dyes. Bioresource Technology, 99, 7003–7010. doi: 10.1016/j.biortech.2008.01.019.Google Scholar
  147. 147.
    Cantarelli, C., Brenna, O., Giovanelli, G., & Rossi, M. (1989). Beverage stabilization through enzymatic removal of phenolics. Food Biotechnology, 3, 203–214.Google Scholar
  148. 148.
    Minussi, R. C., Pastore, G. M., & Duran, N. (2002). Potential applications of laccase in the food industry. Trends in Food Science & Technology, 13, 205–216. doi: 10.1016/S0924-2244(02)00155-3.Google Scholar
  149. 149.
    Giovanelli, G., & Ravasini, G. (1993). Apple juice stabilization by combined enzyme membrane filtration process. Lebensmittel-Wissenschaft + Technologie, 26, 1–7. doi: 10.1006/fstl.1993.1001.Google Scholar
  150. 150.
    Rubilar, O., Diez, M. C., & Gianfreda, L. (2008). Transformation of chlorinated phenolic compounds by white rot fungi. Critical Reviews in Environmental Science and Technology, 38, 227–268. doi: 10.1080/10643380701413351.Google Scholar
  151. 151.
    Raghukumar, C., D'Souza-Ticlo, D., & Verma, A. K. (2008). Treatment of colored effluents with lignin-degrading enzymes: An emerging role of marine-derived fungi. Critical Reviews in Microbiology, 34, 189–206. doi: 10.1080/10408410802526044.Google Scholar
  152. 152.
    D'souza, T. D., Tiwari, R., Sah, A. K., & Raghukumar, C. (2006). Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzyme and Microbial Technology, 38, 504–511. doi: 10.1016/j.enzmictec.2005.07.005.Google Scholar
  153. 153.
    Gianfreda, L., Iamarino, G., Scelza, R., & Rao, M. A. (2006). Oxidative catalysts for the transformation of phenolic pollutants: A brief review. Biocatalysis and Biotransformation, 24, 177–187. doi: 10.1080/10242420500491938.Google Scholar
  154. 154.
    Minussi, R. C., Pastore, M. G., & Duran, N. (2007). Laccase induction in fungi and laccase/N-OH mediator systems applied in paper mill effluent. Bioresource Technology, 98, 158–164. doi: 10.1016/j.biortech.2005.11.008.Google Scholar
  155. 155.
    Minussi, R. C., Miranda, M. A., Silva, J. A., Ferreira, C. V., Aoyama, H., Marangoni, S., et al. (2007). Purification, characterization and application of laccase from Trametes versicolor for colour and phenolic removal of olive mill wastewater in the presence of 1-hydroxybenzotriazole. African Journal of Biotechnology, 6, 1248–1254.Google Scholar
  156. 156.
    Sampedro, I., Cajthaml, T., Marinari, S., Petruccioli, M., Grego, S., & D'Annibale, A. (2009). Organic matter transformation and detoxification in dry olive mill residue by the saprophytic fungus Paecilomyces farinosus. Process Biochemistry, 44, 216–225. doi: 10.1016/j.procbio.2008.10.016.Google Scholar
  157. 157.
    Villaasenor, F., Lorea, O., Campero, A., & Viniegra-Gonzalez, G. (2004). Oxidation of dibenzothiophene by laccase or hydrogen peroxide and deep desulfurization of diesel fuel by the latter. Fuel Processing Technology, 86, 49–59. doi: 10.1016/j.fuproc.2003.12.007.Google Scholar
  158. 158.
    Xu, P., Yu, B., Li, F. L., Cai, X. F., & Ma, C. Q. (2006). Microbial degradation of sulfur, nitrogen and oxygen heterocycles. Trends in Microbiology, 14, 398–405. doi: 10.1016/j.tim.2006.07.002.Google Scholar
  159. 159.
    Catcheside, D. E. A., & Ralph, J. P. (1999). Biological processing of coal. Applied Microbiology and Biotechnology, 52, 16–24. doi: 10.1007/s002530051482.Google Scholar
  160. 160.
    Keum, Y. S., & Li, Q. X. (2004). Copper dissociation as a mechanism of fungal laccase denaturation by humic acid. Applied Microbiology and Biotechnology, 64, 588–592. doi: 10.1007/s00253-003-1460-y.Google Scholar
  161. 161.
    Fakoussa, R. M., & Frost, P. J. (1999). In-vivo decolorization of coal derived humic acids by laccase excreting fungus Trametes versicolor. Applied Microbiology and Biotechnology, 52, 60–65. doi: 10.1007/s002530051487.Google Scholar
  162. 162.
    Ryan, P. J., Gross, D., Owen, W. J., & Loani, T. L. (1981). The metabolism of chlorotoluron, diuron and CGA 43057 in tolerant and susceptible plants. Pesticide Biochemistry and Physiology, 16, 213–221. doi: 10.1016/0048-3575(81)90055-9.Google Scholar
  163. 163.
    Jolivalt, C., Raynal, A., Caminade, E., Kokel, B., Le Goffic, F., & Mougin, C. (1999). Transformation of N,N′-dimethyl-N-(hydroxyphenol) urea by laccase from white rot fungus Trametes versicolor. Applied Microbiology and Biotechnology, 51, 676–681. doi: 10.1007/s002530051451.Google Scholar
  164. 164.
    Kamei, I., & Kondo, R. (2006). Simultaneous degradation of commercially produced CNP herbicide and of contaminated dioxin by treatment using the white-rot fungus Phlebia brevispora. Chemosphere, 65, 1221–1227. doi: 10.1016/j.chemosphere.2006.03.030.Google Scholar
  165. 165.
    Pozdnyakova, N. N., Rodakiewicz-Nowak, J., Turkovskaya, O. V., & Haber, J. (2006). Oxidative degradation of polyaromatic hydrocarbons catalyzed by blue laccase from Pleurotus ostreatus D1 in the presence of synthetic mediators. Enzyme and Microbial Technology, 39, 1242–1249. doi: 10.1016/j.enzmictec.2006.03.009.Google Scholar
  166. 166.
    Duran, N., & Esposito, E. (2000). Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: A review. Applied Catalysis B: Environmental, 28, 83–99. doi: 10.1016/S0926-3373(00)00168-5.Google Scholar
  167. 167.
    Pointing, S. B. (2001). Feasibility of bioremediation by white rot fungi. Applied Microbiology and Biotechnology, 57, 20–33. doi: 10.1007/s002530100745.Google Scholar
  168. 168.
    Couto, S. R., & Toca-Herrera, J. L. (2006). Laccases in the textile industry. Biotechnology and Molecular Biology Review, 4, 117–122.Google Scholar
  169. 169.
    Selinheimo, E., Kruus, K., Buchert, J., Hopia, A., & Autio, K. (2006). Effects of laccase, xylanase and their combination on the rheological properties of wheat dough. Journal of Cereal Science, 43, 152–159. doi: 10.1016/j.jcs.2005.08.007.Google Scholar
  170. 170.
    Selinheimo, E., Autio, K., Kruus, K., & Buchert, J. (2007). Elucidating the mechanism of laccase and tyrosinase in wheat bread making. Journal of Agricultural and Food Chemistry, 55, 6357–6365. doi: 10.1021/jf0703349.Google Scholar
  171. 171.
    Bhalerao, U. T., Muralikrishna, C., & Rani, B. R. (1994). Laccase enzyme catalyzed efficient synthesis of 3-substituted 1,2,4-triazolo(4, 3-b)(4, 1, 2)benzothiazidine-8-ones. Tetrahedron, 50, 4019–4024. doi: 10.1016/S0040-4020(01)89677-0.Google Scholar
  172. 172.
    Mikolasch, A., Hammer, E., Jonas, U., Popowski, K., Stielow, A., & Schauer, F. (2002). Synthesis of 3-(3,4-dihydroxy-phenyl)-propionic acid derivatives by N-coupling of amines using laccase. Tetrahedron, 58, 7589–7593. doi: 10.1016/S0040-4020(02)00872-4.Google Scholar
  173. 173.
    Lang, G., & Cotteret, J. (1999). Hair dye composition containing a laccase. (L’Oreal, Fr.). International Patent Application, WO9936036.Google Scholar
  174. 174.
    Golz-Berner, K., Walzel, B., Zastrow, L., & Doucet, O. (2004). Cosmetic and dermatological preparation containing copper-binding proteins for skin lightening. International Patent Application, WO2004017931.Google Scholar
  175. 175.
    Wang, H. X., & Ng, T. B. (2004). Purification of a novel low-molecular-mass laccase with HIV-1 reverse transcriptase inhibitory activity from the mushroom Tricholoma giganteum. Biochemical and Biophysical Research Communications, 315, 450–454. doi: 10.1016/j.bbrc.2004.01.064.Google Scholar
  176. 176.
    Haghighi, B., Gorton, L., Ruzgas, T., & Jönsson, L. J. (2003). Characterization of graphite electrodes modified with laccase from Trametes versicolor and their use for bioelectrochemical monitoring of phenolic compounds in flow injection analysis. Analytica Chimica Acta, 487, 3–14. doi: 10.1016/S0003-2670(03)00077-1.Google Scholar
  177. 177.
    Yaropolov, A. I., Skorobogatko, O. V., Vartanov, S. S., & Varfolomeyev, S. D. (1994). Laccase: Properties, catalytic mechanism and applicability. Applied Biochemistry and Biotechnology, 49, 257–280. doi: 10.1007/BF02783061.Google Scholar
  178. 178.
    Cordi, L., Minussi, R. C., Freire, R. S., & Durán, N. (2007). Fungal laccase: Copper induction, semi-purification, immobilization, phenolic effluent treatment and electrochemical measurement. African Journal of Biotechnology, 6, 1255–1259.Google Scholar
  179. 179.
    Schmid, R. D., & Urlacher, V. B. (2007). Modern biooxidation: Enzymes, reactions and applications (p. 53). Weinheim: Wiley.Google Scholar
  180. 180.
    Duran, N., Rosa, M. A., D'Annibale, A., & Gianfreda, L. (2002). Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: A review. Enzyme and Microbial Technology, 31, 907–931. doi: 10.1016/S0141-0229(02)00214-4.Google Scholar
  181. 181.
    Messerschmidt, A. (1994). Blue copper oxidases. Advances in Inorganic Chemistry, 40, 121–185. doi: 10.1016/S0898-8838(08)60183-X.Google Scholar
  182. 182.
    Bonnen, A. M., Anton, L. H., & Orth, A. B. (1994). Lignin-degrading enzymes of the commercial button mushroom, Agaricus bisporus. Applied and Environmental Microbiology, 60, 960–965.Google Scholar
  183. 183.
    De Jong, E., Field, J. A., & De Bont, J. A. M. (1992). Evidence for a new extracellular peroxidase. Manganese inhibited peroxidase from the white rot fungus Bjerkandera sp. BOS55. FEBS Letters, 99, 107–110. doi: 10.1016/0014-5793(92)80111-S.Google Scholar
  184. 184.
    Ruttimann-Johnson, C., Salas, L., Vicuna, R., & Kirk, T. K. (1993). Extracellular enzyme production and synthetic lignin mineralization by Ceriporiopsis subvermispora. Applied and Environmental Microbiology, 59, 1792–1797.Google Scholar
  185. 185.
    Morita, Y., Yamashita, H., Mikami, B., Iwamoto, H., Aibara, S., Terada, M., et al. (1988). Purification, crystallization and characterization of peroxidase from Coprinus cinereus. Journal of Biochemistry, 103, 693–699.Google Scholar
  186. 186.
    Heinzkill, M., Bech, L., Halkier, T., Schneider, P., & Anke, T. (1998). Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae). Applied and Environmental Microbiology, 64, 1601–1606.Google Scholar
  187. 187.
    Vyas, B. R. M., Volc, J., & Sasek, V. (1994). Ligninolytic enzymes of selected white rot fungi cultivated on wheat straw. Folia Microbiologica, 39, 235–240. doi: 10.1007/BF02814655.Google Scholar
  188. 188.
    Vasdev, K., & Kuhad, R. C. (1994). Induction of laccase production in Cyathus bulleri under shaking and static culture conditions. Folia Microbiologica, 39, 326–330. doi: 10.1007/BF02814322.Google Scholar
  189. 189.
    Arora, D. S., & Gill, P. K. (2000). Laccase production by some white rot fungi under different nutritional conditions. Bioresource Technology, 73, 283–285. doi: 10.1016/S0960-8524(99)00141-8.Google Scholar
  190. 190.
    Haars, A., & Huttermann, A. (1983). Laccase induction in the white rot fungus Heterobasidion annosum (Fr.) Bref. (Fomes annosus Fr. Cooke). Archives of Microbiology, 134, 309–313. doi: 10.1007/BF00407808.Google Scholar
  191. 191.
    Nerud, F., Zouchova, Z., & Misurcova, Z. (1991). Ligninolytic properties of different white rot fungi. Biotechnology Letters, 13, 657–660. doi: 10.1007/BF01086322.Google Scholar
  192. 192.
    Farnet, A. M., Criquet, S., Tagger, S., Gil, G., & Le Petit, J. (2000). Purification, partial characterization and reactivity with aromatic compounds of two laccases from Marasmius quercophilus strain 17. Canadian Journal of Microbiology, 46, 1–6. doi: 10.1139/cjm-46-3-189.Google Scholar
  193. 193.
    Vares, T., Niemenmaa, O., & Hatakka, A. (1994). Secretion of ligninolytic enzymes and mineralization of 14C ring labeled synthetic lignin by three Phlebia tremellosa strains. Applied and Environmental Microbiology, 60, 569–575.Google Scholar
  194. 194.
    Martinez, A. T., Camarero, S., Guillen, F., Gutiérrez, A., Muñoz, C., Varela, E., et al. (1994). Progress in biopulping of non-woody materials: Chemicals, enzymatic and ultrastructural aspects of wheat straw delignification with ligninolytic fungi from genus Pleurotus. FEMS Microbiology Reviews, 13, 265–273.Google Scholar
  195. 195.
    Bourbonnais, R., & Paice, M. G. (1988). Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju. The Biochemical Journal, 255, 445–450.Google Scholar
  196. 196.
    Huttermann, A., Milstein, O., Nicklas, B., Trojanowski, J., Haars, A., & Kharazipour, A. (1989). Enzymatic modification of lignin for technical use. In W. G. Glasser & S. Sarkanen (Eds.), Lignin—properties and materials. ACS symposium series (Vol. 397 , pp. 361–370). Washington, DC: American Chemical Society.Google Scholar
  197. 197.
    Galliano, H., Gas, G., & Seris, J. L. (1991). Lignin degradation by Rigidoporus lignosus involves synergistic action of two oxidizing enzymes: MnP and laccase. Enzyme and Microbial Technology, 13, 478–482. doi: 10.1016/0141-0229(91)90005-U.Google Scholar
  198. 198.
    Dong, J. L., & Zhang, Y. Z. (2004). Purification and characterization of two laccase isoenzymes from a ligninolytic fungus Trametes gallica. Preparative Biochemistry & Biotechnology, 34, 179–194. doi: 10.1081/PB-120030876.Google Scholar
  199. 199.
    Fasola, T. R., Gbolagade, J. S., & Fasidi, I. O. (2007). Nutritional requirements of Volvariella. speciosa (Fr.Ex.Fr.) Singer, a Nigerian edible mushroom. Food Chemistry, 100, 904–908. doi: 10.1016/j.foodchem.2005.10.061.Google Scholar
  200. 200.
    Mayer, A. M., & Harel, E. (1979). Polyphenol oxidases in plants. Phytochemistry, 18, 193–215. doi: 10.1016/0031-9422(79)80057-6.Google Scholar
  201. 201.
    Kiiskinen, L. L., Viikari, L., & Kruus, K. (2002). Purification and characterization of a novel laccase from the ascomycete Melanocarpus albomyces. Applied Microbiology and Biotechnology, 59, 198–204. doi: 10.1007/s00253-002-1012-x.Google Scholar
  202. 202.
    Durrens, P. (1981). The phenoloxidase of the ascomycete Podospora anserina: The three forms of major laccase activity. Archives of Microbiology, 130, 121–124. doi: 10.1007/BF00411062.Google Scholar
  203. 203.
    Kurtz, M. B., & Champe, S. P. (1982). Purification and characterization of the conidial laccase of Aspergillus nidulans. Journal of Bacteriology, 151, 1338–1345.Google Scholar
  204. 204.
    Slomczynski, D., Nakas, J. P., & Tanenbaum, S. W. (1995). Production and characterization of laccase from Botrytis cinerea 61-34. Applied and Environmental Microbiology, 61, 907–912.Google Scholar
  205. 205.
    Thakker, G., Evans, C. S., & Rao, K. K. (1992). Purification and characterization of laccase from Monocillium indicum. Applied Microbiology and Biotechnology, 37, 321–323. doi: 10.1007/BF00210986.Google Scholar
  206. 206.
    Lee, K. H., Wi, S. G., Singh, A. P., & Kim, Y. S. (2004). Micromorphological characteristics of decayed wood and laccase produced by brown rot fungus Coniophora puteana. Journal of Wood Science, 50, 291–284. doi: 10.1007/s10086-003-0558-2.Google Scholar
  207. 207.
    Kirk, T. K., & Shimada, M. (1985). Lignin biodegradation: The microorganisms involved and the physiology and biochemistry of degradation by white-rot fungi. In T. Higuchied (Ed.), Biosynthesis and bio degradation of wood components (pp. 579–605). Orlando: Academic.Google Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  1. 1.Department of Microbiology, Microbial Technology LaboratoryGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations