Advertisement

Applied Biochemistry and Biotechnology

, Volume 160, Issue 6, pp 1585–1599 | Cite as

Biochemical Properties and PCR Performance of a Family B DNA Polymerase from Hyperthermophilic Euryarchaeon Thermococcus peptonophilus

  • Jong Il Lee
  • Yun Jae Kim
  • Heejin Bae
  • Sung Suk Cho
  • Jung-Hyun Lee
  • Suk-Tae KwonEmail author
Article

Abstract

The Thermococcus peptonophilus (Tpe) DNA polymerase gene was expressed under the control of the T7lac promoter on pET-22b(+) in Escherichia coli BL21-CodonPlus(DE3)-RIL in order to fully elucidate its biochemical properties and evaluate its feasibility in polymerase chain reaction (PCR) application. The expressed enzyme was then purified by heat treatment followed by two steps of column chromatography after which optimum pH and temperature of the enzyme were evaluated to be 7.0 and 75 °C, respectively. The optimal buffer for PCR with Tpe DNA polymerase consisted of 50 mM Tris–HCl (pH 8.0), 2 mM MgCl2, 80 mM KCl, and 0.02% Triton X-100. Tpe DNA polymerase revealed a 3.6-fold higher fidelity (3.37 × 10−6) than Taq DNA polymerase (12.13 × 10−6) and performed significantly more efficiently in PCR amplification than both Taq and Pfu DNA polymerases. Ratios of 31:1 of Taq to Tpe DNA polymerases allowed PCR amplification of targets up to 15 kb in length with a 2.2-fold higher fidelity than Taq DNA polymerase. The results of the PCR experiments indicate that Tpe DNA polymerase may provide a higher fidelity DNA amplification in a shorter reaction time.

Keywords

DNA polymerase Thermococcus peptonophilus Polymerase chain reaction PCR efficiency PCR fidelity Archaea 

Notes

Acknowledgment

This work was supported by the Extreme Genome Research Center Program of the Ministry of Land, Transportation and Maritime Affairs, Republic of Korea.

References

  1. 1.
    Woese, C. R., & Fox, G. E. (1977). Proceedings of the National Academy of Sciences of the United States of America, 74, 5088–5090. doi: 10.1073/pnas.74.11.5088.CrossRefGoogle Scholar
  2. 2.
    Barns, S. M., Delwiche, C. F., Palmer, J. D., & Pace, N. R. (1996). Proceedings of the National Academy of Sciences of the United States of America, 93, 9188–9193. doi: 10.1073/pnas.93.17.9188.CrossRefGoogle Scholar
  3. 3.
    Huber, H., Hohn, M. J., Rachel, R., Fuchs, T., Wimmer, V. C., & Stetter, K. O. (2002). Nature, 417, 63–67. doi: 10.1038/417063a.CrossRefGoogle Scholar
  4. 4.
    Cambon-Bonavita, M. A., Schmitt, P., Zieger, M., Flaman, J. M., Lesongeur, F., Raguenes, G., et al. (2000). Extremophiles, 4, 215–225. doi: 10.1007/PL00010714.CrossRefGoogle Scholar
  5. 5.
    Saiki, R. K., Bugawan, T. L., Horn, G. T., Mullis, K. B., & Erlich, H. A. (1986). Nature, 324, 163–166. doi: 10.1038/324163a0.CrossRefGoogle Scholar
  6. 6.
    Takagi, M., Nishioka, M., Kakihara, H., Kitabayashi, M., Inoue, H., Kawakami, B., et al. (1997). Applied and Environmental Microbiology, 63, 4504–4510.Google Scholar
  7. 7.
    Marsic, D., Flaman, J. M., & Ng, J. D. (2008). Extremophiles, 12, 775–788. doi: 10.1007/s00792-008-0181-7.CrossRefGoogle Scholar
  8. 8.
    Lee, Y. J., Choi, J. J., & Kwon, S.-T. (2006). Enzyme and Microbial Technology, 38, 821–830. doi: 10.1016/j.enzmictec.2005.08.010.CrossRefGoogle Scholar
  9. 9.
    Kahler, M., & Antranikian, G. (2000). Journal of Bacteriology, 182, 655–663. doi: 10.1128/JB.182.3.655-663.2000.CrossRefGoogle Scholar
  10. 10.
    Griffiths, K., Nayak, S., Park, K., Mandelman, D., Modrell, B., Lee, J., et al. (2007). Protein Expression and Purification, 52, 19–30. doi: 10.1016/j.pep. 2006.07.022.CrossRefGoogle Scholar
  11. 11.
    Kong, H., Kucera, R. B., & Jack, W. E. (1993). The Journal of Biological Chemistry, 268, 1965–1975.Google Scholar
  12. 12.
    Lundberg, K. S., Shoemaker, D. D., Adams, M. W., Short, J. M., Sorge, J. A., & Mathur, E. J. (1991). Gene, 108, 1–6. doi: 10.1016/0378-1119(91)90480-Y.CrossRefGoogle Scholar
  13. 13.
    Mattila, P., Korpela, J., Tenkanen, T., & Pitkanen, K. (1991). Nucleic Acids Research, 19, 4967–4973. doi: 10.1093/nar/19.18.4967.CrossRefGoogle Scholar
  14. 14.
    Southworth, M. W., Kong, H., Kucera, R. B., Ware, J., Jannasch, H. W., & Perler, F. B. (1996). Proceedings of the National Academy of Sciences of the United States of America, 93, 5281–5285. doi: 10.1073/pnas.93.11.5281.CrossRefGoogle Scholar
  15. 15.
    Kim, Y. J., Lee, H. S., Bae, S. S., Jeon, J. H., Lim, J. K., Cho, Y., et al. (2007). Journal of Microbiology and Biotechnology, 17, 1090–1097.Google Scholar
  16. 16.
    Shin, H. J., Lee, S. K., Choi, J. J., Koh, S., Lee, J. H., Kim, S. J., et al. (2005). Journal of Microbiology and Biotechnology, 15, 1359–1367.Google Scholar
  17. 17.
    Henneke, G., Flament, D., Hubscher, U., Querellou, J., & Raffin, J. P. (2005). Journal of Molecular Biology, 350, 53–64. doi: 10.1016/j.jmb.2005.04.042.CrossRefGoogle Scholar
  18. 18.
    Choi, J. J., Nam, K. H., Min, B., Kim, S. J., Soll, D., & Kwon, S. T. (2006). Journal of Molecular Biology, 356, 1093–1106. doi: 10.1016/j.jmb.2005.12.036.CrossRefGoogle Scholar
  19. 19.
    Song, J. M., Choi, J. J., Kim, T. O., Seo, M. S., Lee, M. S., Kim, H. K., et al. (2007). Enzyme and Microbial Technology, 40, 1475–1483. doi: 10.1016/j.enzmictec.2006.10.025.CrossRefGoogle Scholar
  20. 20.
    Cann, I. K., & Ishino, Y. (1999). Genetics, 152, 1249–1267.Google Scholar
  21. 21.
    Cline, J., Braman, J. C., & Hogrefe, H. H. (1996). Nucleic Acids Research, 24, 3546–3551. doi: 10.1093/nar/24.18.3546.CrossRefGoogle Scholar
  22. 22.
    Barnes, W. M. (1994). Proceedings of the National Academy of Sciences of the United States of America, 91, 2216–2220. doi: 10.1073/pnas.91.6.2216.CrossRefGoogle Scholar
  23. 23.
    Weissensteiner, T., Griffin, H. G., & Griffin, A. M. (2004). Current innovations. Boca Raton: CRC.Google Scholar
  24. 24.
    Gonzalez, J. M., Kato, C., & Horikoshi, K. (1995). Archives of Microbiology, 164, 159–164. doi: 10.1007/BF02529966.CrossRefGoogle Scholar
  25. 25.
    Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual. New York: Cold Spring Harbor Laboratory.Google Scholar
  26. 26.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). The Journal of Biological Chemistry, 193, 265–275.Google Scholar
  27. 27.
    Sanger, F., Coulson, A. R., Hong, G. F., Hill, D. F., & Petersen, G. B. (1982). Journal of Molecular Biology, 162, 729–773. doi: 10.1016/0022-2836(82)90546-0.CrossRefGoogle Scholar
  28. 28.
    Kwon, S.-T., Kim, J. S., Park, J. H., Kim, H. K., & Lee, D. S. (1997). Molecules and Cells, 7, 264–271.Google Scholar
  29. 29.
    Choi, J. J., Song, J. G., Nam, K. H., Lee, J. I., Bae, H., Kim, G. A., et al. (2008). Applied and Environmental Microbiology, 74, 6563–6569. doi: 10.1128/AEM.00624-08.CrossRefGoogle Scholar
  30. 30.
    Hamilton, S. C., Farchaus, J. W., & Davis, M. C. (2001). BioTechniques, 31, 370–376, 378–380, 382–383.Google Scholar
  31. 31.
    Park, J. H., Kim, J. S., Kwon, S.-T., & Lee, D.-S. (1993). European Journal of Biochemistry, 214, 135–140. doi: 10.1111/j.1432-1033.1993.tb17905.x.CrossRefGoogle Scholar
  32. 32.
    Ellsworth, D. L., Eittenhouse, K. D., & Honeycutt, R. L. (1993). BioTechniques, 14, 214–217.Google Scholar
  33. 33.
    Cheng, S., Chang, S. Y., Gravitt, P., & Respess, R. (1994). Nature, 369, 684–685. doi: 10.1038/369684a0.CrossRefGoogle Scholar
  34. 34.
    Nishioka, M., Mizuguchi, H., Fujiwara, S., Komatsubara, S., Kitabayashi, M., Uemura, H., et al. (2001). Journal of Biotechnology, 88, 114–119. doi: 10.1016/S0168-1656(01)00275-9.CrossRefGoogle Scholar
  35. 35.
    Burger, G., Lavrov, D. V., Forget, L., & Lang, B. F. (2007). Nature Protocols, 2, 603–614. doi: 10.1038/nprot.2007.59.CrossRefGoogle Scholar
  36. 36.
    Hu, M., Chilton, N. B., & Gasser, R. B. (2002). Molecular and Cellular Probes, 16, 261–267. doi: 10.1006/mcpr.2002.0422.CrossRefGoogle Scholar
  37. 37.
    Zheng, R., Matsui, E., Shen, Y., Musti, K. V., Feng, Y., Darnis, S., et al. (2001). Extremophiles, 5, 111–117. doi: 10.1007/s007920100178.CrossRefGoogle Scholar
  38. 38.
    Jacewicz, A., Makiela, K., Kierzek, A., Drake, J. W., & Bebenek, A. (2007). Journal of Molecular Biology, 368, 18–29. doi: 10.1016/j.jmb.2007.01.067.CrossRefGoogle Scholar
  39. 39.
    Kunkel, T. A. (1988). Cell, 53, 837–840. doi: 10.1016/S0092-8674(88)90189-4.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Jong Il Lee
    • 1
  • Yun Jae Kim
    • 2
  • Heejin Bae
    • 1
  • Sung Suk Cho
    • 1
  • Jung-Hyun Lee
    • 2
  • Suk-Tae Kwon
    • 1
    Email author
  1. 1.Department of Biotechnology and BioengineeringSungkyunkwan UniversitySuwonRepublic of Korea
  2. 2.Korea Ocean Research and Development InstituteAnsanRepublic of Korea

Personalised recommendations