Bleach Enhancement of Mixed Wood Pulp by Xylanase–Laccase Concoction Derived Through Co-culture Strategy

  • Pallavi Dwivedi
  • V. Vivekanand
  • Nidhi Pareek
  • Amit Sharma
  • Rajesh P. Singh
Article

Abstract

Mixed enzyme preparation having both xylanase and laccase activity was evaluated for its bleach enhancing ability of mixed wood pulp. The enzyme was produced through co-cultivation of mutant Penicillium oxalicum SAUE-3.510 and Pleurotus ostreatus MTCC 1804 under solid-state fermentation. Bleaching of pulp with mixed enzyme had resulted into a notable decrease in kappa number and increased brightness as compared to xylanase alone. Analysis of bleaching conditions had denoted that 8 IU g−1 of mixed enzyme preparation (xylanase/laccase, 22:1) had led into maximal removal of lignin from pulp when bleaching was performed at 10% pulp consistency (55 °C, pH 9.0) for 3 h. An overall improvement of 21%, 8%, 3%, and 5% respectively in kappa number, brightness, yellowness, and viscosity of pulp was achieved under derived bleaching conditions. Process of enzymatic bleaching was further ascertained by analyzing the changes occurring in polysaccharide and lignin by HPLC and FTIR. The UV absorption spectrum of the compounds released during enzymatic treatment had denoted a characteristic peak at 280 nm, indicating the presence of lignin in released coloring matter. The changes in fiber morphology following enzymatic delignification were studied by scanning electron microscopy.

Keywords

Biobleaching Penicillium oxalicum Co-cultivation Xylanase Laccase Pleurotus ostreatus 

Notes

Acknowledgements

Senior research fellowship awarded by Council of Scientific and Industrial Research, New Delhi, India to first author and national doctoral fellowship to second author by All India Council of Technical Education, New Delhi, India are gratefully acknowledged.

References

  1. 1.
    Barreca, A. M., Fabbrini, M., Galli, C., Gentili, P., & Ljunggren, S. (2003). Laccase/mediated oxidation of a lignin model for improved delignification procedures. Journal of Molecular Catalysis B, Enzymatic, 26, 105–110. doi:10.1016/j.molcatb.2003.08.001.CrossRefGoogle Scholar
  2. 2.
    Uffen, R. L. (1997). Xylan degradation: a glimpse at Microbiol diversity. Journal of Industrial Microbiology & Biotechnology, 19, 1–6. doi:10.1038/sj.jim.2900417.CrossRefGoogle Scholar
  3. 3.
    Record, E., Asther, M., Sigoillot, C., Pages, S., Punt, P. J., Haon, M., et al. (2003). Overproduction of the Aspergillus niger feruloyl esterase for pulp bleaching applications. Applied Microbiology and Biotechnology, 62, 349–355. doi:10.1007/s00253-003-1325-4.CrossRefGoogle Scholar
  4. 4.
    Bajpai, P., & Bajpai, P. K. (1992). Biobleaching of kraft pulp. Proc Biochem, 27, 319–325. doi:10.1016/0032-9592(92)87009-6.CrossRefGoogle Scholar
  5. 5.
    Ragauskus, A. J., Poll, K. N., & Cesternino, A. (1994). Effects of xylanase pretreatment procedures on non-chlorine bleaching. Enzyme and Microbial Technology, 16, 492–495. doi:10.1016/0141-0229(94)90019-1.CrossRefGoogle Scholar
  6. 6.
    Tolan, J. S., & Guenette, M. (1997). Using enzymes in pulp bleaching: mill applications. Advances in Biochemical Engineering/Biotechnology, 157, 290–309.Google Scholar
  7. 7.
    Paice, M. G., Gurnagul, N., Page, D. H., & Jurasek, L. (1992). Mechanism of hemicellulose directed prebleaching of kraft pulp. Enzyme & Microbial Technology, 14, 272–276. doi:10.1016/0141-0229(92)90150-M.CrossRefGoogle Scholar
  8. 8.
    Pham, P. L., Alric, I., & Delmas, M. (1995). Incorporation of xylanase in total chlorine free bleach sequences using ozone and hydrogen peroxide. Appita Journal, 48, 213–217.Google Scholar
  9. 9.
    Niku-Paavola, M. L., Ranua, M., Suurnakki, A., & Kantelinen, A. (1994). Effects of lignin modifying enzymes on pine kraft pulp. Bioresource Technology, 50, 73–77. doi:10.1016/0960-8524(94)90223-2.CrossRefGoogle Scholar
  10. 10.
    Garg, A. P., Roberts, J. C., & Mc Carthy, A. J. (1998). Bleach boosting effect of cellulase free xylanase of Streptomyces thermoviolaceus and its comparison with two commercial enzyme prepartions on birchwood kraft pulp. Enzyme and Microbial Technology, 22, 594–598. doi:10.1016/S0141-0229(97)00250-0.CrossRefGoogle Scholar
  11. 11.
    Beg, Q. K., Bhushan, B., Kapoor, M., & Hoondal, G. S. (2000). Production and characterization of thermostable xylanase and pectinase from a Streptomyces sp. QG-11–3. Journal of Industrial Microbiology & Biotechnology, 16, 211–213.Google Scholar
  12. 12.
    Atik, C., Imamoglu, S., & Bermek, H. (2006). Impact of xylanase pre-treatment on peroxide bleaching stage of biokraft pulp. International Biodeterioration & Biodegradation, 58, 22–26. doi:10.1016/j.ibiod.2006.04.003.CrossRefGoogle Scholar
  13. 13.
    Sandrim, V. C., Rizzatti, A. C. S., Terenzi, H. F., Jorge, J. A., Milagres, A. M. F., & Polizeli, M. L. T. M. (2005). Purification and biochemical characterization of two xylanases produced by Aspergillus caespitosus and their potential for kraft pulp bleaching. Process Biochemistry, 40, 1823–1828. doi:10.1016/j.procbio.2004.06.061.CrossRefGoogle Scholar
  14. 14.
    Khandeparkar, R., & Bhosle, N. B. (2007). Application of thermoalkalophilic xylanase from Arthrobacter sp. MTCC 5214 in biobleaching of kraft pulp. Bioresource Technology, 98, 897–903. doi:10.1016/j.biortech.2006.02.037.CrossRefGoogle Scholar
  15. 15.
    Medeiros, R. G., Silva, F. G., Jr., Salles, B. C., Estelles, R. S., & Filho, E. X. F. (2002). The performance of fungal xylan-degrading enzyme preparations in elemental chlorine free bleaching for eucalyptus pulp. Journal of Industrial Microbiology & Biotechnology, 28, 204–206. doi:10.1038/sj.jim.7000227.CrossRefGoogle Scholar
  16. 16.
    Roncero, M. B., Torres, A. L., Colom, J. F., & Vidal, T. (2003). TCF bleaching of wheat straw pulp using ozone and xylanase. Part A: paper quality assessment. Bioresource Technology, 87, 305–314. doi:10.1016/S0960-8524(02)00224-9.CrossRefGoogle Scholar
  17. 17.
    Gronqvist, S., Buchert, J., Rantanen, K., Viikari, L., & Suurnakki, A. (2003). Activity of laccase on unbleached and bleached thermomechanical pulp. Enzyme & Microbial Technology, 32, 439–445. doi:10.1016/S0141-0229(02)00319-8.CrossRefGoogle Scholar
  18. 18.
    Lund, M., Eriksson, M., & Felby, C. (2003). Reactivity of fungal laccase towards lignin in softwood kraft pulp. Holzforschung, 57, 21–26. doi:10.1515/HF.2003.004.CrossRefGoogle Scholar
  19. 19.
    Camarero, S., Ibarra, D., Martinez, A. T., Romero, J., Gutlerrez, A., & Rio, J. C. D. (2007). Paper pulp delignification using laccase and natural mediators. Enzyme & Microbial Technology, 40, 1264–1271. doi:10.1016/j.enzmictec.2006.09.016.CrossRefGoogle Scholar
  20. 20.
    Ibarra, D., Romero, J., Martinez, M. J., Martinez, A. T., & Camarero, S. (2006). Exploring the enzymatic parameters for optimal delignification of eucalyptus pulp by laccase mediator. Enzyme & Microbial Technology, 39, 1319–1327. doi:10.1016/j.enzmictec.2006.03.019.CrossRefGoogle Scholar
  21. 21.
    Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428. doi:10.1021/ac60147a030.CrossRefGoogle Scholar
  22. 22.
    de-Souza Cruz, P. B., Freer, J., Siika-aho, M., & Ferraz, A. (2004). Extraction and determination of enzyme produced by Cerriporiopsis subvermispora during biopulping of Pinus Taeda wood chips. Enzyme & Microbial Technology, 34, 228–234.CrossRefGoogle Scholar
  23. 23.
    Patel, A. N., Grabski, A. C., & Jeffries, T. W. (1993). Chromophore release from kraft pulp by purified Streptomyces roseiscleroticus xylanase. Applied Microbiology & Biotechnology, 39, 405–412. doi:10.1007/BF00192102.Google Scholar
  24. 24.
    Gupta, S., Bhushan, B., & Hoondal, G. S. (2000). Isolation, purification and characterization of xylanase from Staphylococcus sp. SG-13 and its application in biobleaching of kraft pulp. Journal of Applied Microbiology, 88, 325–334. doi:10.1046/j.1365-2672.2000.00974.x.CrossRefGoogle Scholar
  25. 25.
    TAPPI test methods. (1996). Technical association of the pulp and paper industry. Atlanta, GA: TAPPI press.Google Scholar
  26. 26.
    Geng, X., & Li, K. (2002). Degradation of nonphenolic lignin by the white-rot fungus Pycnoporus cinnabarinus. Applied Microbiology & Biotechnology, 60, 342–346. doi:10.1007/s00253-002-1124-3.CrossRefGoogle Scholar
  27. 27.
    Buta, J. G., Zardrazil, F., & Gallettti, G. C. (1989). FT-IR determination of lignin degradation in wheat straw by white rot fungus Stropharia rugosoannulata with different oxygen concentrations. Journal of Agricultural & Food Chemistry, 37, 1382–1384. doi:10.1021/jf00089a038.CrossRefGoogle Scholar
  28. 28.
    Niku-Paavola, M. L., Karhunen, E., Salola, P., & Raunio, V. (1988). Lignolytic enzymes of the white rot fungus Phlebia radiata. Journal of Biochemistry, 266, 36–43.Google Scholar
  29. 29.
    Goodell, B., Yamamoto, K., Jellison, J., Nakamura, M., Fujii, T., Takabe, K., et al. (1998). Laccase immunolabelling and microanalytical analysis of wood degraded by Lentinus edodes. Holzforschung, 52, 345–350.CrossRefGoogle Scholar
  30. 30.
    Torres, A. L., Roncero, M. B., Colom, J. F., Pastor, F. I. J., Blanco, A., & Vidal, T. (2000). Effect of a novel enzyme on fibre morphology during ECF bleaching of oxygen delignified eucalyptus kraft pulps. Bioresource Technology, 74, 135–140. doi:10.1016/S0960-8524(99)00178-9.CrossRefGoogle Scholar
  31. 31.
    Roncero, M. B., Torres, A. L., Colom, J. F., & Vidal, T. (2000). Using xylanase before oxygen delignification on TCF bleaching. Influence on fiber surfaces by SEM. Process Biochemistry, 36, 45–50. doi:10.1016/S0032-9592(00)00178-3.CrossRefGoogle Scholar
  32. 32.
    Roncero, M. B., Torres, A. L., Colom, J. F., & Vidal, T. (2005). The effect of xylanase on lignocellulosic components during the bleaching of wood pulps. Bioresource Technology, 96, 21–30. doi:10.1016/j.biortech.2004.03.003.CrossRefGoogle Scholar
  33. 33.
    Sealey, J., & Ragaukas, A. J. (1998). Residual lignin studies of laccase-delignified kraft pulps. Enzyme & Microbial Technology, 23, 422–426. doi:10.1016/S0141-0229(98)00056-8.CrossRefGoogle Scholar
  34. 34.
    El Mansouri, N. E., & Salvado, J. (2007). Analytical methods for determining functional groups in various technical lignins. Industrial Crops & Products, 26, 116–124. doi:10.1016/j.indcrop. 2007.02.006.CrossRefGoogle Scholar
  35. 35.
    Faix, O. (1992). Methods in lignin chemistry, Fourier transform infrared spectroscopy (Lin, S. Y., & Dence, C. W., ed.) (pp. 83–109). Berlin, Heidelberg: Springer.Google Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Pallavi Dwivedi
    • 1
    • 2
  • V. Vivekanand
    • 1
    • 3
  • Nidhi Pareek
    • 1
  • Amit Sharma
    • 1
    • 4
  • Rajesh P. Singh
    • 1
  1. 1.Department of BiotechnologyIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Department of BiotechnologySir Padampat Singhania UniversityUdaipurIndia
  3. 3.Lundberg Laboratory, CMB-Molecular BiologyGothenburg UniversityGothenburgSweden
  4. 4.Division of GeneticsIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations