Advertisement

Applied Biochemistry and Biotechnology

, Volume 160, Issue 4, pp 1102–1115 | Cite as

Rheology of Dilute Acid Hydrolyzed Corn Stover at High Solids Concentration

  • M. R. Ehrhardt
  • T. O. Monz
  • T. W. Root
  • R. K. Connelly
  • C. T. Scott
  • D. J. KlingenbergEmail author
Article

Abstract

The rheological properties of acid hydrolyzed corn stover at high solids concentration (20–35 wt.%) were investigated using torque rheometry. These materials are yield stress fluids whose rheological properties can be well represented by the Bingham model. Yield stresses increase with increasing solids concentration and decrease with increasing hydrolysis reaction temperature, acid concentration, and rheometer temperature. Plastic viscosities increase with increasing solids concentration and tend to decrease with increasing reaction temperature and acid concentration. The solids concentration dependence of the yield stress is consistent with that reported for other fibrous systems. The changes in yield stress with reaction conditions are consistent with observed changes in particle size. This study illustrates that torque rheometry can be used effectively to measure rheological properties of concentrated biomass.

Keywords

Biomass Corn stover Rheology Yield stress Viscosity Acid hydrolysis 

Notes

Acknowledgments

This project was supported in part by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number 2006-35504-17401.

References

  1. 1.
    Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., et al. (2002). NREL Technical Report TR-510-32438.Google Scholar
  2. 2.
    Schell, D. J., Farmer, J., Newman, M., & McMillan, J. D. (2003). Applied Biochemistry and Biotechnology, 105, 69–85. doi: 10.1385/ABAB:105:1-3:69.CrossRefGoogle Scholar
  3. 3.
    Wooley, R., Ruth, M., Sheehan, J., Ibsen, K., Majdeski, H., & Galvez, A. (1999). NREL Technical Report TP-580-26157.Google Scholar
  4. 4.
    Sheehan, J., Aden, A., Paustian, K., Killian, K., Brenner, J., Walsh, M., et al. (2004). Journal of Industrial Ecology, 7, 117–146. doi: 10.1162/108819803323059433.CrossRefGoogle Scholar
  5. 5.
    Wyman, C. E. (2007). Trends in Biotechnology, 25, 153–157. doi: 10.1016/j.tibtech.2007.02.009.CrossRefGoogle Scholar
  6. 6.
    Lynd, L. R. (1996). Annual Review of Energy and the Environment, 21, 403–465. doi: 10.1146/annurev.energy.21.1.403.CrossRefGoogle Scholar
  7. 7.
    Wingren, A., Galbe, M., & Zacchi, G. (2003). Biotechnology Progress, 19, 1109–1117. doi: 10.1021/bp0340180.CrossRefGoogle Scholar
  8. 8.
    Jørgensen, H., Vibe-Pedersen, J., Larsen, J., & Felby, C. (2007). Biotechnology and Bioengineering, 96, 862–870. doi: 10.1002/bit.21115.CrossRefGoogle Scholar
  9. 9.
    Rosgaard, L., Andric, P., Dam-Johansen, K., Pedersen, S., & Meyer, A. S. (2007). Applied Biochemistry and Biotechnology, 143, 27–40. doi: 10.1007/s12010-007-0028-1.CrossRefGoogle Scholar
  10. 10.
    Um, B., & Hanley, T. R. (2008). Applied Biochemistry and Biotechnology, 145, 29–38. doi: 10.1007/s12010-007-8105-z.CrossRefGoogle Scholar
  11. 11.
    Lu, Y., Wang, Y., Xu, G., Chu, J., Zhuang, Y., & Zhang, S. (2008). Applied Biochemistry and Biotechnology . doi: 10.1007/s12010-008-8306-0.
  12. 12.
    Pimenova, N., & Hanley, T. (2003). Applied Biochemistry and Biotechnology, 106, 383–392. doi: 10.1385/ABAB:106:1-3:383.CrossRefGoogle Scholar
  13. 13.
    Pimenova, N., & Hanley, T. (2004). Applied Biochemistry and Biotechnology, 114, 347–360. doi: 10.1385/ABAB:114:1-3:347.CrossRefGoogle Scholar
  14. 14.
    Viamajala, S., McMillan, J. D., Schell, D. J., & Elander, R. T. (2009). Bioresource Technology, 100, 925–934. doi: 10.1016/j.biortech.2008.06.070.CrossRefGoogle Scholar
  15. 15.
    Nguyen, Q. D., Akroyd, T., De Kee, D. C., & Zhu, L. (2006). Korea–Australia Rheology Journal, 18, 15–24.Google Scholar
  16. 16.
    Scott, C. T., & Zauscher, S. (1997). Tappi Environmental Conference Proceedings, pp. 739–743. Atlanta: Tappi Press.Google Scholar
  17. 17.
    Zauscher, S., Scott, C. T., Willett, J. L., & Klingenberg, D. J. (2000). Tappi Journal, 83, 1–10.Google Scholar
  18. 18.
    Zauscher, S. (2000). PhD Thesis, University of Wisconsin, Madison, WI, USA.Google Scholar
  19. 19.
    Ehrhardt, M. E. (2008). M.S. Thesis, University of Wisconsin, Madison, WI.Google Scholar
  20. 20.
    Hsu, D. (1995). NREL Laboratory Analytical Procedure LAP-007.Google Scholar
  21. 21.
    Vroom, K. (1957). Pulp & Paper Magazine of Canada, 58, 238–231.Google Scholar
  22. 22.
    Biermann, C. (1996). Handbook of pulping and papermaking (2nd ed.). San Diego: Academic.Google Scholar
  23. 23.
    Maloney, M., Chapman, T., & Baker, A. (1985). Biotechnology and Bioengineering, 27, 355–361. doi: 10.1002/bit.260270321.CrossRefGoogle Scholar
  24. 24.
    Chum, H., Johnson, D., Black, S., & Overend, R. (1990). Applied Biochemistry and Biotechnology, 24/25, 1–14. doi: 10.1007/BF02920229.CrossRefGoogle Scholar
  25. 25.
    Saracoglu, N., Mutlu, S., Dilmac, G., & Cavusoglu, H. (1998). Bioresource Technology, 65, 29–33. doi: 10.1016/S0960-8524(98)00032-7.CrossRefGoogle Scholar
  26. 26.
    Kim, S., Yum, D., & Park, S. (2000). Bioresource Technology, 72, 289–294. doi: 10.1016/S0960-8524(99)00081-4.CrossRefGoogle Scholar
  27. 27.
    Aguilar, R., Ramirez, J., Garrote, G., & Vazquez, M. (2002). Journal of Food Engineering, 55, 309–318. doi: 10.1016/S0260-8774(02)00106-1.CrossRefGoogle Scholar
  28. 28.
    Goodrich, J. E., & Porter, R. S. (1967). Polymer Engineering and Science, 7, 45–51. doi: 10.1002/pen.760070112.CrossRefGoogle Scholar
  29. 29.
    Bousmina, M., Ait-Kadi, A., & Faisant, J. B. (1999). Journal of Rheology (New York, N.Y.), 43, 415–433. doi: 10.1122/1.551044.Google Scholar
  30. 30.
    Bohlin VOR Rheometer Users Manual, Malvern Instruments, Westborough, MA.Google Scholar
  31. 31.
    Swerin, A., Powell, R., & Odberg, L. (1992). Nordic Pulp & Paper Research Journal, 7, 126–143. doi: 10.3183/NPPRJ-1992-07-03-p126-132.CrossRefGoogle Scholar
  32. 32.
    Bennington, C., Kerekes, R., & Grace, J. (1990). Canadian Journal of Chemical Engineering, 68, 748–757.CrossRefGoogle Scholar
  33. 33.
    Kerekes, R. (2006). Nordic Pulp & Paper Research Journal, 21, 598–612. doi: 10.3183/NPPRJ-2006-21-05-p598-612.CrossRefGoogle Scholar
  34. 34.
    Dalpke, B., & Kerekes, R. (2005). Journal of Pulp and Paper Science, 31, 39–43.Google Scholar
  35. 35.
    Schmid, C., Switzer, L., & Klingenberg, D. J. (2000). Journal of Rheology (New York, N.Y.), 44, 781–809. doi: 10.1122/1.551116.Google Scholar
  36. 36.
    Switzer, L. H., & Klingenberg, D. J. (2003). Journal of Rheology (New York, N.Y.), 47, 759–778. doi: 10.1122/1.1566034.Google Scholar
  37. 37.
    Wahren, D. (1964). Svenska Papperstidn, 67, 378–381.Google Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • M. R. Ehrhardt
    • 1
    • 2
  • T. O. Monz
    • 1
    • 2
  • T. W. Root
    • 1
    • 2
  • R. K. Connelly
    • 3
    • 4
  • C. T. Scott
    • 5
  • D. J. Klingenberg
    • 1
    • 2
    Email author
  1. 1.Department of Chemical and Biological EngineeringUniversity of WisconsinMadisonUSA
  2. 2.Rheology Research CenterUniversity of WisconsinMadisonUSA
  3. 3.Department of Biological Systems EngineeringUniversity of WisconsinMadisonUSA
  4. 4.Department of Food ScienceUniversity of WisconsinMadisonUSA
  5. 5.US Forest Service Forest Products LaboratoryMadisonUSA

Personalised recommendations