Skip to main content
Log in

Evaluation of Probiotic Characteristics of Siderophoregenic Bacillus spp. Isolated from Dairy Waste

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Siderophoregenic Bacillus strain DET9 has been selectively isolated from dairy waste. It was evaluated for probiotic characteristics and susceptibility pattern against antibiotics. Its spores showed excellent tolerance to simulated gastrointestinal tract conditions and exhibited antimicrobial activity against organisms such as Escherichia coli, Micrococcus flavus, and Staphylococcus aureus. Its susceptibility to antibiotics reduces the prospect to donate resistance determinants if administered in the form of probiotic preparations. It was observed to produce ∼60 mg/l catecholate type of siderophore under iron stressed conditions, identified as a 2,3-dihydroxy benzoic acid by high-performance liquid chromatography, infrared spectroscopy, nuclear magnetic resonance, and mass spectral analysis. Partial 16S-rRNA gene sequencing analysis shows that the isolate exhibited homology with Bacillus thuringiensis and Bacillus weihenstephanensis, whereas biochemical characterization revealed its novelty. DET9 exhibited no mortality of fishes in a 60-day trial, when fishes (surfi tetra) were challenged up to 100 ppm cell concentration, with their daily diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rowland, I. (1999). Probiotics and benefits to human health: The evidence in favour. Environmental Microbiology, 1, 375–382. doi:10.1046/j.1462-2920.1999.00064.x.

    Article  CAS  Google Scholar 

  2. Shanahan, F. (2004). Probiotics in inflammatory bowel disease: Therapeutic rationale and role. Advanced Drug Delivery Reviews, 56, 809–818. doi:10.1016/j.addr.2003.11.003.

    Article  CAS  Google Scholar 

  3. Czerucka, D., & Rampal, P. (2002). Experimental effects of Saccharomyces boulardii on diarrheal pathogens. Microbes and Infection, 4, 733–739. doi:10.1016/S1286-4579(02)01592-7.

    Article  Google Scholar 

  4. Patterson, J. A., & Burkholder, K. M. (2003). Application of prebiotics and probiotics in poultry production. Poultry Science, 82, 627–631.

    CAS  Google Scholar 

  5. Sanders, M. E., Morelli, L., & Tompkins, T. A. (2003). Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Comprehensive Revies in Food Science and Food Safety, 2, 101–110. doi:10.1111/j.1541-4337.2003.tb00017.x.

    Article  Google Scholar 

  6. Pinchuk, I. V., Bressollier, P., Verneuil, B., Fenet, B., Sorokulova, I. B., Megraud, F., et al. (2001). In vitro anti-Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics. Antimicrobial Agents and Chemotherapy, 45, 3156–3161. doi:10.1128/AAC.45.11.3156-3161-2001.

    Article  CAS  Google Scholar 

  7. D’Arienzo, R., Maurano, F., Mazzarella, G., Luongo, D., Stefanile, R., Ricca, E., et al. (2006). Bacillus subtilis spores reduce susceptibility to Citrobacter rodentium-mediated enteropathy in a mouse model. Research in Microbiology, 157, 891–897. doi:10.1016/j.resmic.2006.06.001.

    Article  Google Scholar 

  8. Tejada-Simon, M. V., Ustunol, Z., & Pestka, J. J. (1999). Effects of lactic acid 849 bacteria ingestion on basal cytokine mRNA and immunoglobulin levels 850 in the mouse. Journal of Food Protection, 62, 287–291.

    CAS  Google Scholar 

  9. Lee, J. Y., Janes, B. K., Passalacqua, K. D., Pfleger, B. F., Bergman, N. H., Liu, H., et al. (2007). Biosynthetic analysis of the petrobactin siderophore pathway from Bacillus anthracis. Journal of Bacteriology, 189, 1698–1710.

    Article  CAS  Google Scholar 

  10. May, J. J., Wendrich, T. M., & Marahiel, M. A. (2001). The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. The Journal of Biological Chemistry, 276(10), 7209–7217. doi:10.1074/jbc.M009140200.

    Article  CAS  Google Scholar 

  11. Lankford, C. E. (1973). Bacterial assimilation of iron. Critical Reviews in Microbiology, 2, 273–331. doi:10.3109/10408417309108388.

    Article  CAS  Google Scholar 

  12. Suryalala, D., Umamaheswardevi, P. & Vijayalakshmi, K. (2004). Chemical characterization and in vitro antibiosis of siderophore of rhizosphere fluorescent Pseudomonas. Ind. J. Microbiol, 105–108.

  13. Chincholkar, S. B., Chaudhari, B. L., & Rane, M. R. (2007). Microbial siderophores in human and plant health care. In A. Varma, & S. B. Chincholkar (Eds.), Soil Biology: Microbil siderophore (pp. 205–214). Berlin: Springer.

    Chapter  Google Scholar 

  14. Koransky, J. R., Allen, S. D., & Dowell, V. R. J. (1978). Use of ethanol for selective isolation of spore-forming microorganisms. Applied and Environmental Microbiology, 35, 762–765.

    CAS  Google Scholar 

  15. Muller, G., & Raymond, K. (1984). Specificity and mechanism of ferrioxamine mediated iron transport in Streptomyces pilosus. Journal of Bacteriology, 160(1), 304–312.

    CAS  Google Scholar 

  16. Pidiyar, V., Kaznowski, A., Narayan, N. B., Patole, M., & Shouche, Y. S. (2002). Aeromonas culicicola sp. nov., from the midgut of Culex quinquefasciatus. International Journal of Systematic and Evolutionary Microbiology, 52(5), 1723–1728. doi:10.1099/ijs.0.02019-0.

    Article  CAS  Google Scholar 

  17. Duc, L. H., Hong, H. A., Barbosa, T. M., Henriques, A. O., & Cutting, S. M. (2004). Characterisation of Bacillus probiotics available for human use. Applied and Environmental Microbiology, 70, 2161–2171. doi:10.1128/AEM.70.4.2161-2171.2004.

    Article  CAS  Google Scholar 

  18. Pugsley, A. P. (1985). Escherichia coli K12 strains for use in the identification and characterization of colicins. Journal of General Microbiology, 131, 369–376.

    CAS  Google Scholar 

  19. Thapa, N., Pal, J., Pal, J., & Tamang, J. P. (2004). Microbial Diversity in Ngari, Hentak and Tungtap, Fermented Fish Products of North-East India. World Journal of Microbiology & Biotechnology, 20, 599–607. doi:10.1023/B:WIBI.0000043171.91027.7e.

    Article  CAS  Google Scholar 

  20. Jonsson, H., Strom, F., & Roos, S. (2001). Addition of mucin to the growth medium triggers mucus-binding activity in different strains of Lactobacillus reuteri in vitro. FEMS Microbiology Letters, 204, 19–22. doi:10.1111/j.1574-6968.2001.tb10855.x.

    Article  CAS  Google Scholar 

  21. Roos, S., Karner, F., Axelsson, L., & Jonsson, H. (2000). Lactobacillus mucosae sp. nov., a new species with in vitro mucus-binding activity isolated from pig intestine. International Journal of Systematic and Evolutionary Microbiology, 50, 251–258.

    CAS  Google Scholar 

  22. Del Re, B., Sgorbati, B., Miglioli, M., & Palenzona, D. (2000). Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Letters in Applied Microbiology, 31, 438–442. doi:10.1046/j.1365-2672.2000.00845.x.

    Article  CAS  Google Scholar 

  23. Kos, B., Suskovic, J., Vokavic, S., Simpraga, M., Frece, J., & Matosic, S. (2003). Adhesion and autoaggregation ability of probiotic strain Lactobacillus acidophilus M92. j. Applied Microbiology, 94, 981–987. doi:10.1046/j.1365-2672.2003.01915.x.

    Article  CAS  Google Scholar 

  24. Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160, 47–56. doi:10.1016/0003-2697(87)90612-9.

    Article  CAS  Google Scholar 

  25. Arnow, L. E. (1937). Colorimetric determination of the components of 3, 4-Dihydroxyphenyl alanine- tyrosine mixtures. The Journal of Biological Chemistry, 118, 531–537.

    CAS  Google Scholar 

  26. Csaky, T. Z. (1948). On the estimation of bound hydroxylamine in biological materials. Acta Chemica Scandinavica, 2, 450–454. doi:10.3891/acta.chem.scand.02–0450.

    Article  CAS  Google Scholar 

  27. Payne, S. M. (1994). Detection, isolation and characterization of siderophores. Methods in Enzymology, 235, 329–344. doi:10.1016/0076-6879(94)35151-1.

    Article  CAS  Google Scholar 

  28. Aneja, K. R. (2003). Experiments in microbiology plant pathology and Biotechnology (4th ed.). Daryaganj, New Delhi: New age international publishers.

    Google Scholar 

  29. Claus, D., & Berkeley, R. C. W. (1986). Genus Bacillus Cohn 1872. In P. H. A. Sneath (Ed.), Bergey’s Manual of Systematic Bacteriology, Section 13, Vol.2 (pp. 1105–1139). Baltimore, MD, USA: Williams & Wilkins.

    Google Scholar 

  30. Rhodehamel, J., & Harmon, S. M. (2001). Bacteriological Analytical Manual (8th Ed), 1998. US Food and Drug Administration. Chapter 14. US FDA-CFSAN BAM-Bacillus cereus.htm

  31. Pandey, A., Bringel, F., & Meyer, J. M. (1994). Iron requirement and search for siderophores in lactic acid bacteria. Appl. Microbial and Cell Physiol, 40(5), 735–739.

    CAS  Google Scholar 

  32. Bezkorovainy et al., (1989). Biochemistry and Physiology of Bifidobacteria (pp. 147–176). In A. Bezkorovainy & R. Miller-Catchpole (Eds.). CRC.

  33. Ueda, S. (1989). In B. Maruo, & H. Yoshikawa (Eds.), Utilization of soybean as natto: a traditional Japanese food, Bacillus subtilis: molecular biology and industrial application pp. 143–161. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  34. Crueger, W., & Crueger, A. (1982). Enzymes. In W. Crueger, & A. Crueger (Eds.), Biotechnology: a textbook of industrial microbiology pp. 161–174. Madison, Wis. USA: Science Tech.

    Google Scholar 

  35. Casula, G., & Cutting, S. M. (2002). Bacillus probiotics: spore germination in the gastrointestinal tract. Applied and Environmental Microbiology, 68, 2344–2352. doi:10.1128/AEM.68.5.2344-2352.2002.

    Article  CAS  Google Scholar 

  36. Nakano, M. M., & Zuber, P. (1998). Anaerobic growth of a “strict aerobe” (Bacillus subtilis). Annual Review of Microbiology, 52, 165–190. doi:10.1146/annurev.micro.52.1.165.

    Article  CAS  Google Scholar 

  37. Sanders, M. E., Morelli, L., & Tompkins, T. A. (2003). Comprehensive Reviews in Food Science and Food Safty, Sporeformers as Human Probiotics: Bacillus, Sporolactobacillus, and Brevibacillus, 2, 101–110. www.ift.org/publications/crfsfs.

  38. SCAN. (2001). Report of the Scientific Committee on Animal Nutrition on product Toyocerin_ for use as feed additive. European Commission, Health and Consumer Protection Directorate-General. (SCAN) Scientific Committee on Animal Nutrition. Available from: http://europa.eu.int/comm/food/fs/sc/scan/out72_en.pdf.

  39. SCAN. (2000). Report of the Scientific Committee on Animal Nutrition on product BioPlus 2B_ for use as feed additive. European Commission, Health and Consumer Protection Directorate-General. (SCAN) Scientific Committee on Animal Nutrition. Available from: http://europa.eu.int/comm/food/fs/sc/scan/out49_en.pdf.

  40. Bellon-Fontaine, M. N., Rault, J., & van Oss, C. J. (1996). Microbial adhesion to solvents: a novel method to determine the electrondonor/ electron-acceptor or Lewis acid-base properties of microbial cells. Colloids and Surfaces, 7, 47–53. doi:10.1016/0927-7765(96)01272-6.

    Article  CAS  Google Scholar 

  41. Pedersen, K., & Tannock, G. W. (1989). Colonization of the porcine gastrointestinal tract by lactobacilli. Applied and Environmental Microbiology, 55, 279–283.

    CAS  Google Scholar 

  42. Freter, M. (1992). Factors affecting the microecology of the gut. In R. Fuller (Ed.), Probiotics. The Scientific Basis pp. 111–145. Glasgow: Chapman & Hall.

    Google Scholar 

  43. Alander, M., Korpela, R., Saxelin, M., Vilpponen-Salmela, T., Matilla-Sandholm, T., & Wright, A. (1997). Recovery of Lactobacillus rhamnosus GG from human colonic biopsies. Letters in Applied Microbiology, 24, 361–364. doi:10.1046/j.1472-765X.1997.00140.x.

    Article  CAS  Google Scholar 

  44. Otero, M. C., Ocana, V. S., & Macias, E. N. M. (2004). Bacterial surface characteristics applied to selection of probiotic microorganisms. Methods in Molecular Biology (Clifton, N.J.), 268, 435–440.

    Google Scholar 

  45. Rijnaarts, H. H. M., Norde, W., Bouwer, E. J., Lyklema, J., & Zehnder, A. J. B. (1993). Bacterial adhesion under static and dynamic conditions. Applied and Environmental Microbiology, 59, 3255–3265.

    CAS  Google Scholar 

  46. Pannucci, J., Okinaka, R. T., Sabin, R., & Kuske, C. R. (2002). Bacillus anthracis pXO1 Plasmid Sequence Conservation among Closely Related Bacterial Species. Journal of Bacteriology, 184(1), 134–141. doi:10.1128/JB.184.1.134-141.2002.

    Article  CAS  Google Scholar 

  47. Yilmaz, M., Soran, H., & Beyatli, Y. (2006). Antimicrobial activities of some Bacillus spp. strains isolated from the soil. Microbiological Research, 161(2), 127–131. doi:10.1016/j.micres.2005.07.001.

    Article  Google Scholar 

  48. Lee, K. H., Jun, K. D., Kim, W. S., & Paik, H. D. (2001). Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Letters in Applied Microbiology, 32, 146–151. doi:10.1046/j.1472-765x.2001.00876.x.

    Article  CAS  Google Scholar 

  49. Hyronimus, B., Le Marrec, C., & Urdaci, M. C. (1998). Coagulin, a bacteriocin-like inhibitory substance produced by Bacillus coagulans 14. Journal of Applied Microbiology, 85, 42–50. doi:10.1046/j.1365–2672.1998.00466.x.

    Article  CAS  Google Scholar 

  50. Chincholkar, S. B., Chaudhari, B. L., Talegaonkar, S. K., & Kothari, R. M. (2000). “Microbial iron chelators: A sustainable tool for the biocontrol of plant disease”. In R. K Upadhyay, K. G. Mukerji, & P. C. Chamola (Eds.), Biocontrol potential and its exploitation in sustainable agriculture (vol. Vol. 1, pp. 49–70). USA: Kluwer Academic/Plenum.

    Google Scholar 

  51. Sharma, A., & Johri, B. N. (2003a). Combat of iron-deprivation through a plant growth promoting fluorescent Pseudomonas strain GRP3A in mung bean (Vigna radiata L. Wilzeck). Microbiological Research, 158, 77–81. doi:10.1078/0944-5013-00182.

    Article  CAS  Google Scholar 

  52. Poole, K., & McKay, G. A. (2003). Iron acquisition and its control in Pseudomonas aeruginosa: Many roads lead to Roam. Frontiers in Bioscience, 8, 661–686. doi:10.2741/1051.

    Article  Google Scholar 

Download references

Acknowledgement

Financial support (grant no. BT/PR-7587/PID/20/300/2006) by DBT, Government of India, Ministry of Science and Technology, New Delhi is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir Bhaskarrao Chincholkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, A.K., Ahire, J.J., Pawar, S.P. et al. Evaluation of Probiotic Characteristics of Siderophoregenic Bacillus spp. Isolated from Dairy Waste. Appl Biochem Biotechnol 160, 140–155 (2010). https://doi.org/10.1007/s12010-009-8583-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8583-2

Keywords

Navigation