Applied Biochemistry and Biotechnology

, Volume 160, Issue 5, pp 1356–1361 | Cite as

Antibacterial Activities of Crude Extract of Aloe barbadensis to Clinically Isolated Bacterial Pathogens

Article

Abstract

The antibacterial activity of Aloe barbadensis was tested on clinically isolated bacterial pathogens i.e. Enterococcus bovis, Staphylococcus aureus, Escherichia coli, Proteus vulgaris, Proteus mirabilis, Pseudomonas aeruginosa, Morganella morganii, and Klebsiella pneumoniae causing infection in human being. Ethanolic and aqueous extracts were used for the antibacterial effect, which was measured by the appearance of zone of inhibition. Relatively higher MIC concentrations were obtained for gram negative bacteria E. coli and K. pneumoniae, with ethanol extract; however, no inhibitory effect was noted for aqueous extract. Ethanolic extract possesses great inhibitory activity for gram positive bacteria, E. bovis followed by S. aureus. Among gram negative bacteria, highest inhibitory effect was observed with P. aeruginosa, followed by M. morganii, P. mirabilis, and P. vulgaris, which was significant (p < 0.01) than E. coli and K. pneumoniae. Antimicrobial activity tests of crude extract of A. barbadensis were carried out to validate the use of traditional medicinal herbal and results of this study tend to give credence to the common use of A. barbadensis gel and leaf.

Keywords

Aloe vera Antibacterial Ethanolic extract Herbal Medicinal plant 

Notes

Acknowledgement

The authors are grateful to the Head, Department of Medical Biochemistry and Secretary, Uttarakhand Forest Hospital Trust Medical College, Haldwani, India for their support, encouragement and providing research facilities. Department of Medical Microbiology, Uttarakhand Forest Hospital Trust Medical College, Haldwani, India is duly acknowledged for providing pure culture of clinically isolated bacterial pathogen.

Supplementary material

12010_2009_8577_MOESM1_ESM.pdf (712 kb)
ESM 1 (PDF 712 KB)

References

  1. 1.
    Habeeb, F., Shakir, E., Bradbury, F., Cameron, P., Taravati, M. R., Drummond, A. J., et al. (2007). Methods (San Diego, California.), 42, 315–320. doi: 10.1016/j.ymeth.2007.03.004.Google Scholar
  2. 2.
    Tan, B. K., & Vanitha, (2004). Current Medicinal Chemistry, 11, 1423–1430.Google Scholar
  3. 3.
    Karthikeyan, B., Jaleel, C. A., Lakshmanan, G. M. A., & Deiveekasundaram, M. (2008). Colloids and Surfaces. B, Biointerfaces, 62, 143–145. doi: 10.1016/j.colsurfb.2007.09.004.CrossRefGoogle Scholar
  4. 4.
    Rodriguez-Fragoso, L., Reyes-Esparza, J., Burchiel, S. W., Herrera-Ruiz, D., & Torres, E. (2008). Toxicology and Applied Pharmacology, 227, 125–135. doi: 10.1016/j.taap.2007.10.005.CrossRefGoogle Scholar
  5. 5.
    Bergamante, V., Ceschel, G. C., Marazzita, S., Ronchi, C., & Fini, A. (2007). Drug Delivery, 14, 427–432. doi: 10.1080/10717540701202960.CrossRefGoogle Scholar
  6. 6.
    Tyler, V. (1995). The honest herbal: A sensible guide to the use of herbs and related remedies. Binghamton: Pharmaceutical Products.Google Scholar
  7. 7.
    Online: Hallowitz, R. (2005) Library of abstracts of peer-reviewed professional journal articles on Aloe vera, with introduction and editorial commentary. Available from: http://br-plus.com/herbalabstracts/aloevera/library.htm. Accessed December 31, 2008.
  8. 8.
    Grindlay, D., & Reynolds, T. (1986). Journal of Ethnopharmacology, 16, 117–151. doi: 10.1016/0378-8741(86)90085-1.CrossRefGoogle Scholar
  9. 9.
    Stanić, S. (2007). Archives of Biological Sciences (Belgrade), 59, 223–226.CrossRefGoogle Scholar
  10. 10.
    Agarry, O. O., Olaleye, M. T., & Bello-Michael, C. O. (2005). African Journal of Biotechnology, 4, 1413–1414.Google Scholar
  11. 11.
    NCCLS. (2000). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically (5th ed.). Approved standard M7-A5. Wayne.Google Scholar
  12. 12.
    MacKenzie, F. M., Bruce, J., Van-Looveren, M., Cornaglia, G., Gould, I. M., & Goossens, H. (2006). Clinical Microbiology and Infection, 12, 1185–1192. doi: 10.1111/j.1469-0691.2006.01549.x.CrossRefGoogle Scholar
  13. 13.
    Janssen, A. M., Scheffer, J. J., & Baerheim-Svendsen, A. (1987). Planta Medica, 53, 395–398. doi: 10.1055/s-2006-962755.CrossRefGoogle Scholar
  14. 14.
    Coopoosamy, R. M., & Magwa, M. L. (2007). African Journal of Biotechnology, 6, 2406–2410.Google Scholar
  15. 15.
    Sokal, R. R., & Rohlf, F. J. (1995). In Biometry, the principles and practice of statistics in biological research (pp. 321–356, 3rd ed.). New York: WH Freeman and Company.Google Scholar
  16. 16.
    Davis, H. R. (1997). Aloe vera: A scientific approach. New York: Vantage.Google Scholar
  17. 17.
    Kelmanson, J. E., Jager, A. K., & Van-Staden, J. (2000). Journal of Ethnopharmacology, 69, 241–246. doi: 10.1016/S0378-8741(99)00147-6.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  1. 1.Department of Biotechnology, Institute of Allied Health (Paramedical) Services, Education and TrainingUttarakhand Forest Hospital TrustHaldwaniIndia
  2. 2.G. B. Pant University of Agriculture and TechnologyPantnagarIndia
  3. 3.Molecular Biology and BiotechnologyCSMCRIBhavnagarIndia

Personalised recommendations