Applied Biochemistry and Biotechnology

, Volume 160, Issue 3, pp 945–963

Phytochelatins: Peptides Involved in Heavy Metal Detoxification

Article

Abstract

Phytochelatins (PCs) are enzymatically synthesized peptides known to involve in heavy metal detoxification and accumulation, which have been measured in plants grown at high heavy metal concentrations, but few studies have examined the response of plants even at lower environmentally relevant metal concentrations. Recently, genes encoding the enzyme PC synthase have been identified in plants and other species enabling molecular biological studies to untangle the mechanisms underlying PC synthesis and its regulation. The present paper embodies review on recent advances in structure of PCs, their biosynthetic regulation, roles in heavy metal detoxification and/or accumulation, and PC synthase gene expression for better understanding of mechanism involved and to improve phytoremediation efficiency of plants for wider application.

Keywords

Heavy metals Phytochelatins Vacuolar sequestration Sulfide ions 

References

  1. 1.
    Garbisu, C., & Alkorta, I. (2003). European Journal of Mineral Processing & Environmental Protection, 3, 58–66.Google Scholar
  2. 2.
    Halim, M., Conte, P., & Piccolo, A. (2003). Chemosphere, 52, 265–275. doi:10.1016/S0045-6535(03)00185-1.Google Scholar
  3. 3.
    Long, X. X., Yang, X. E., & Ni, W. Z. (2002). Chinese Journal of Applied Ecology, 13, 757–762.Google Scholar
  4. 4.
    Blaylock, M. J., & Huang, J. W. (2000). In I. Raskin, & B. D. Ensley (Eds.), Phytoremediation of toxic metals: using plants to clean up the environment, phytoextraction of metals pp. 53–70. New York: Wiley.Google Scholar
  5. 5.
    Salt, D. E., Blaylock, M., Kumar Nanda, P. B. A., Dushenkov, V., Ensley, B. D., Chet, I., & Raskin, I. (1995a). Bio/Technology, 13, 468–474. doi:10.1038/nbt0595-468.Google Scholar
  6. 6.
    Glass, D. J. (2000). In I. Raskin, & B. D. Ensley (Eds.), Phytoremediation of toxic metals: using plants to clean up the environment, economic potential of phytoremediation pp. 15–31. New York: Wiley.Google Scholar
  7. 7.
    Reeves, R. D., & Baker, A. J. M. (2000). In I. Raskin, & B. D. Ensley (Eds.), Phytoremediation of toxic metals: using plants to clean up the environment, metal-accumulating plants pp. 193–229. New York: Wiley.Google Scholar
  8. 8.
    Guerinot, M. L., & Salt, D. E. (2001). Plant Physiology, 125, 164–167. doi:10.1104/pp.125.1.164.Google Scholar
  9. 9.
    Kumar, P. B. A. N., Dushenkov, V., Motto, H., & Raskin, I. (1995). Environmental Science & Technology, 29, 1232–1238. doi:10.1021/es00005a014.Google Scholar
  10. 10.
    Navaza, A. P., Montes-Bayon, M., LeDuc, D. L., Terry, N., & Sanz-Mendel, A. (2006). Journal of Mass Spectrometry, 41, 323–331. doi:10.1002/jms.992.Google Scholar
  11. 11.
    Chen, L., Guo, Y., Yang, L., & Wang, Q. (2008). Chinese Science Bulletin, 53, 1503–1511. doi:10.1007/s11434-008-0062-6.Google Scholar
  12. 12.
    Salt, D. E., Prince, R. C., Pickering, I. J., & Raskin, I. (1995b). Plant Physiology, 109, 1427–1433.Google Scholar
  13. 13.
    Salt, D. E., & Persans, M. W. (2000). Biotechnology & Genetic Engineering Reviews, 17, 389–413.Google Scholar
  14. 14.
    Wang, J., Zhao, F., Meharg, A. A., Raab, A., Feldmann, J., & McGrath, S. P. (2002). Plant Physiology, 130, 1552–1561. doi:10.1104/pp.008185.Google Scholar
  15. 15.
    Woodard, T. L., Thomas, R. J., & Baoshan, X. (2003). Communications in Soil Science and Plant Analysis, 34, 645–654. doi:10.1081/CSS-120018965.Google Scholar
  16. 16.
    Brooks, R. R. (1983). Biological methods of prospecting for minerals, volume 59 pp. 376–377. New York: Wiley.Google Scholar
  17. 17.
    January, M. C., Teresa, J. C., Keulen, H. V., & Wei, R. (2008). Chemosphere, 70, 531–537. doi:10.1016/j.chemosphere.2007.06.066.Google Scholar
  18. 18.
    Sousa, A. I., Cacador, I., Lillebo, A. I., & Pardal, M. A. (2008). Chemosphere, 70, 850–857. doi:10.1016/j.chemosphere.2007.07.012.Google Scholar
  19. 19.
    Li, Z. S., Lu, Y. P., Zhen, R. G., Szczypka, M., Thiele, D. J., & Rea, P. A. (1997). Proceedings of the National Academy of Sciences of the United States of America, 94, 42–47. doi:10.1073/pnas.94.1.42.Google Scholar
  20. 20.
    Kawashima, I., Kennedy, T. D., Chino, M., & Lane, B. G. (1992). European Journal of Biochemistry, 209, 971–976. doi:10.1111/j.1432-1033.1992.tb17370.x.Google Scholar
  21. 21.
    Cobbett, C. S. (2000). Plant Physiology, 123, 825–832. doi:10.1104/pp.123.3.825.Google Scholar
  22. 22.
    Kondo, N., Imai, K., Isobe, M., Goto, T., Murasugi, A., Wada-Nakagawa, C., & Hayashi, Y. (1984). Tetrahedron Letters, 25, 3869–3872. doi:10.1016/S0040-4039(01)91190-6.Google Scholar
  23. 23.
    Gekeler, W., Grill, E., Winnacker, E. L., & Zenk, M. H. (1989). J Naturforsch Teil C, 44, 361–369.Google Scholar
  24. 24.
    Grill, E., Loffler, S., Winnacker, E. L., & Zenk, M. H. (1989). Proceedings of the National Academy of Sciences of the United States of America, 86, 6838–6842. doi:10.1073/pnas.86.18.6838.Google Scholar
  25. 25.
    Ha, S. B., Smith, A. P., Howden, R., Dietrich, W. M., Bugg, S., O’Connell, M. J., Goldsbrough, P. B., & Cobbett, C. S. (1999). The Plant Cell, 11, 1153–1164.Google Scholar
  26. 26.
    Clemens, S., Kim, E. J., Neumann, D., & Schroeder, J. I. (1999). The EMBO Journal, 18, 3325–3333. doi:10.1093/emboj/18.12.3325.Google Scholar
  27. 27.
    Vatamaniuk, O. K., Mari, S., Lu, Y. P., & Rea, P. A. (1999). Proceedings of the National Academy of Sciences of the United States of America, 96, 7110–7115. doi:10.1073/pnas.96.12.7110.Google Scholar
  28. 28.
    Grill, E., Winnacker, E. L., & Zenk, M. H. (1985). Science, 230, 674–676. doi:10.1126/science.230.4726.674.Google Scholar
  29. 29.
    Rauser, W. E. (1995). Plant Physiology, 109, 1141–1149. doi:10.1104/pp.109.4.1141.Google Scholar
  30. 30.
    Mishra, S., Srivastava, S., Tripathi, R. D., Kumar, R., Seth, C. S., & Gupta, D. K. (2006a). Chemosphere, 65, 1027–1039. doi:10.1016/j.chemosphere.2006.03.033.Google Scholar
  31. 31.
    Figueroa, J. A. L., Afton, S., Wrobel, K., Wrobel, K., & Caruso, J. A. (2007). Journal of Analytical Atomic Spectrometry, 22, 897–904. doi:10.1039/b703912c.Google Scholar
  32. 32.
    Mendoza-Cozatl, D. G., Butko, E., Springer, F., Torpey, J. W., Komives, E. A., Kehr, J., & Schroeder, J. I. (2008). The Plant Journal, 54, 249–259. doi:10.1111/j.1365-313X.2008.03410.x.Google Scholar
  33. 33.
    Zhang, Z., Gao, X., & Qiu, B. (2008). Phytochemistry, 69, 911–9118. doi:10.1016/j.phytochem.2007.10.012.Google Scholar
  34. 34.
    Hanikenne, M. (2003). The New Phytologist, 159, 331–340. doi:10.1046/j.1469-8137.2003.00788.x.Google Scholar
  35. 35.
    Chaurasia, N., Mishra, Y., & Rai, L. C. (2008). Biochemical and Biophysical Research Communications, 376, 225–230. doi:10.1016/j.bbrc.2008.08.129.Google Scholar
  36. 36.
    Rauser, W. E. (1999). Cell Biochemistry and Biophysics, 31, 19–48. doi:10.1007/BF02738153.Google Scholar
  37. 37.
    Yang, X. E., & Yang, M. J. (2001). In W. J. Horst, et al. (Ed.), Plant nutrition-food security and sustainability of agro-ecosystems, some mechanisms of zinc and cadmium detoxification in a zinc and cadmium hyperaccumulating plant species (Thlaspi) pp. 444–445. Dordrecht: Kluwer.Google Scholar
  38. 38.
    Gzy, J., & Gwozdz, E. A. (2005). Plant Cell, Tissue and Organ Culture, 80, 59–67. doi:10.1007/s11240-004-8808-6.Google Scholar
  39. 39.
    Ramos, J., Clemente, M. R., Naya, L., Loscos, J., Perez-Rontome, C., Sato, S., Tabata, S., & Becana, M. (2007). Plant Physiology, 143, 1110–1118. doi:10.1104/pp.106.090894.Google Scholar
  40. 40.
    Maitani, T., Kubota, H., Sato, K., & Yamada, T. (1996). Plant Physiology, 110, 1145–1150.Google Scholar
  41. 41.
    Morelli, E., & Scarano, G. (2001). Marine Environmental Research, 52, 383–395. doi:10.1016/S0141-1136(01)00093-9.Google Scholar
  42. 42.
    Iglesia-Turino, S., Febrero, A., Jauregui, O., Caldelas, C., Araus, J. L., & Bort, J. (2006). Plant Physiology, 142, 742–749. doi:10.1104/pp.106.085068.Google Scholar
  43. 43.
    Nishikawa, K., Onodera, A., & Tominaga, N. (2006). Chemosphere, 63, 1553–1559. doi:10.1016/j.chemosphere.2005.09.056.Google Scholar
  44. 44.
    Figueroa, J. A. L., Wrobel, K., Afton, S., Caruso, J. A., Corona, J. F. G., & Wrobel, K. (2008). Chemosphere, 70, 2084–2091. doi:10.1016/j.chemosphere.2007.08.066.Google Scholar
  45. 45.
    Vestergaard, M., Matsumoto, S., Nishikori, S., Shiraki, K., Hirata, K., and Takagi, M. (2008). Analytical Sciences, 24, 277–281.Google Scholar
  46. 46.
    Glaeser, H., Coblenz, A., Kruczek, R., Ruttke, I., Ebert-Jung, A., & Wolf, K. (1991). Current Genetics, 19, 207–213. doi:10.1007/BF00336488.Google Scholar
  47. 47.
    Coblenz, A., & Wolf, K. (2006). FEMS Microbiology Reviews, 14, 303–308. doi:10.1111/j.1574-6976.1994.tb00103.x.Google Scholar
  48. 48.
    Howden, R., Goldsbrough, P. B., Andersen, C. R., & Cobbett, C. S. (1995). Plant Physiology, 107, 1059–1066. doi:10.1104/pp.107.4.1059.Google Scholar
  49. 49.
    Klapheck, S., Schlunz, S., & Bergmann, L. (1995). Plant Physiology, 107, 515–521.Google Scholar
  50. 50.
    Chen, J., Zhou, J., & Goldsbrough, P. B. (1997). Plant Physiology, 101, 165–172.Google Scholar
  51. 51.
    Inouhe, M., Ito, R., Ito, S., Sasada, N., Tohoyama, H., & Joho, M. (2000). Plant Physiology, 123, 1029–1036. doi:10.1104/pp.123.3.1029.Google Scholar
  52. 52.
    Li, J., Guo, J., Xu, W., & Ma, M. (2006a). Journal of Integrative Plant Biology, 48, 928–937. doi:10.1002/9780470988718.Google Scholar
  53. 53.
    Gasic, K., & Korban, S. S. (2007). Journal of Plant Molecular Biology, 64, 361–369. doi:10.1007/s11103-007-9158-7.Google Scholar
  54. 54.
    Lee, S., Petros, D., Moon, J. S., Ko, T. -S., Goldsbrough, P. B., & Korban, S. S. (2003a). Plant Physiology and Biochemistry, 41, 903–910. doi:10.1016/S0981-9428(03)00140-2.Google Scholar
  55. 55.
    Lee, S., Moon, J. S., Ko, T., Petros, D., Goldsbrough, P. B., & Korban, S. S. (2003b). Plant Physiology, 131, 656–663. doi:10.1104/pp.014118.Google Scholar
  56. 56.
    Wojas, S., Clemens, S., Hennig, J., Sklodowska, A., Kopera, E., Schat, H., Bal, W., & Antosiewicz, D. M. (2008). Journal of Experimental Botany, 59, 2205–2219. doi:10.1093/jxb/ern092.Google Scholar
  57. 57.
    Ranieri, A., Castagna, A., Scebba, F., Careri, M., Zagnoni, I., Predieri, G., Pagliari, M., & Toppi, L. S.di. (2005). Plant Physiology & Biochemistry, 43, 45–54. doi:10.1016/j.plaphy.2004.12.004.Google Scholar
  58. 58.
    Mishra, S., Srivastava, S., Tripathi, R. D., Govindarajan, R., Kuriakose, S. V., & Prasad, M. V. (2006b). Plant Physiology and Biochemistry, 44, 25–37. doi:10.1016/j.plaphy.2006.01.007.Google Scholar
  59. 59.
    De Vos, C. H. R., Vonk, M. J., Vooijs, R., & Schat, H. (1992). Plant Physiology, 98, 853–858. doi:10.1104/pp.98.3.853.Google Scholar
  60. 60.
    Schat, H., & Kalff, M. M. A. (1992). Plant Physiology, 99, 1475–1480. doi:10.1104/pp.99.4.1475.Google Scholar
  61. 61.
    De Knecht, J. A., van Dillen, M., Koevoets, P. L. M., Schat, H., Verkleij, J. A. C., & Ernst, W. H. O. (1994). Plant Physiology, 104, 255–261.Google Scholar
  62. 62.
    Sun, Q., Ye, Z. H., Wang, X. R., & Wong, M. H. (2007). Journal of Plant Physiology, 164, 1489–1498. doi:10.1016/j.jplph.2006.10.001.Google Scholar
  63. 63.
    Yates III, J. R., McCormack, A. L., Link, A. J., Schieltz, D., Eng, J., & Hays, L. (1996). Analyst (London), 121, 65–76. doi:10.1039/an996210065r.Google Scholar
  64. 64.
    Vacchina, V., Chassaigne, H., Lobinsk, R., Oven, M., & Zenk, M. H. (1999). Analyst (London), 124, 1425–1430. doi:10.1039/a905163e.Google Scholar
  65. 65.
    Vacchina, V., Lobinsk, R., Oven, M., & Zenk, M. H. (2000). Journal of Analytical Atomic Spectrometry, 15, 529–534. doi:10.1039/b000217h.Google Scholar
  66. 66.
    Fan, T. W., Lane, A. N., & Higashi, R. M. (2004). Phytochemical Analysis, 15, 175–183. doi:10.1002/pca.765.Google Scholar
  67. 67.
    Chen, L., Guo, Y., Yang, L., & Wang, Q. (2007). Journal of Analytical Atomic Spectrometry, 22, 1403–1408. doi:10.1039/b707830g.Google Scholar
  68. 68.
    Faucheur, S. L., Behra, R., & Sigg, L. (2005). Environmental Toxicology and Chemistry, 24, 1731–1737. doi:10.1897/04-394R.1.Google Scholar
  69. 69.
    Cruz, B. H., Diaz-Cruz, J. M., Sestakova, I., Velek, J., Arino, C., & Esteban, M. (2002). Journal of Electroanalytical Chemistry, 520, 111–118. doi:10.1016/S0022-0728(02)00640-X.Google Scholar
  70. 70.
    Kobayashi, R., & Yoshimura, E. (2006). Biological Trace Element Research, 114, 313–318. doi:10.1385/BTER:114:1:313.Google Scholar
  71. 71.
    SchmÖger, M. E. V., Oven, M., & Grill, E. (2000). Plant Physiology, 122, 793–801. doi:10.1104/pp.122.3.793.Google Scholar
  72. 72.
    Raab, A., Feldmann, J., & Meharg, A. A. (2004). Plant Physiology, 134, 1113–1122. doi:10.1104/pp.103.033506.Google Scholar
  73. 73.
    Hirata, K., Tsuji, N., & Miyamoto, K. (2005). Journal of Bioscience and Bioengineering, 100, 593–599. doi:10.1263/jbb.100.593.Google Scholar
  74. 74.
    Ruibin, D., Formentin, E., Losseso, C., Carimi, F., Benedetti, P., Terzi, M., & Lo, S. F. (2005). Journal of Industrial Microbiology & Biotechnology, 32, 527–533. doi:10.1007/s10295-005-0234-1.Google Scholar
  75. 75.
    Clemens, S., Schroeder, J. I., & Degenkolb, T. (2001). European Journal of Biochemistry, 268, 3640–3643. doi:10.1046/j.1432-1327.2001.02293.x.Google Scholar
  76. 76.
    Vatamaniuk, O. K., Bucher, E. A., Ward, J. T., & Rea, P. (2001). The Journal of Biological Chemistry, 276, 20817–20820. doi:10.1074/jbc.C100152200.Google Scholar
  77. 77.
    Brulle, F., Cocquerelle, C., Wamalah, A. N., Morgan, A. J., Kille, P., Lepretre, A., & Vandenbulcke, F. (2008). Ecotoxicology and Environmental Safety, 71, 47–55. doi:10.1016/j.ecoenv.2007.10.032.Google Scholar
  78. 78.
    Tsuji, N., Nishikori, S., Iwabe, O., Shiraki, K., Mivasaka, H., Takagi, M., Hirata, K., & Miyamto, K. (2004). Biochemical and Biophysical Research Communications, 315, 751–755. doi:10.1016/j.bbrc.2004.01.122.Google Scholar
  79. 79.
    Rea, P. A., Vatamaniuk, O. K., & Rigden, D. J. (2004). Plant Physiology, 136, 2463–2474. doi:10.1104/pp.104.048579.Google Scholar
  80. 80.
    Wunschmann, J., Beck, A., Meyer, L., Letzel, T., Grill, E., & Lendzian, K. J. (2007). FEBS Letters, 581, 1681–1687. doi:10.1016/j.febslet.2007.03.039.Google Scholar
  81. 81.
    Vatamaniuk, O. K., Mari, S., Lu, Y. P., & Rea, P. A. (2000). The Journal of Biological Chemistry, 275, 31451–31459. doi:10.1074/jbc.M002997200.Google Scholar
  82. 82.
    Vatamaniuk, O. K., Maris, S., Lang, A., Chalasani, S., Demkiv, L. O., & Rea, P. A. (2004). The Journal of Biological Chemistry, 279, 22449–22460. doi:10.1074/jbc.M313142200.Google Scholar
  83. 83.
    Tsuji, N., Nishikori, S., Iwabe, O., Matsumoto, S., Shiraki, K., Miyasaka, H., Takagi, M., Miyamto, K., & Hirata, K. (2005). Planta, 222, 181–191. doi:10.1007/s00425-005-1513-9.Google Scholar
  84. 84.
    Romanyuk, N. D., Rigden, D. J., Vatamaniuk, O. K., Lang, A., Cahoon, R. E., Jez, J. M., & Rea, P. A. (2006). Plant Physiology, 141, 858–869. doi:10.1104/pp.106.082131.Google Scholar
  85. 85.
    Ruotolo, R., Peracchi, A., Bolchi, A., Infusini, G., Amoresano, A., & Ottonello, S. (2004). The Journal of Biological Chemistry, 279, 14686–14693. doi:10.1074/jbc.M314325200.Google Scholar
  86. 86.
    Collin-Hansen, C., Pedersen, S. A., & Andersan, R. A. (2007). Mycologia, 99, 161–174. doi:10.3852/mycologia.99.2.161.Google Scholar
  87. 87.
    Xianyan, L., Wenyan, Z., Zhi, Z., Jian, C., & Du, G. (2008). Chinese Journal of Biotechnology, 24, 1046–1050. doi:10.1007/978-0-387-71139-3.Google Scholar
  88. 88.
    Liang, G., Lia, X., Du, G., & Chen, J. (2009). Bioresource Technology, 100, 350–355. doi:10.1016/j.biortech.2008.06.012.Google Scholar
  89. 89.
    Xiang, C., & Oliver, D. J. (1998). The Plant Cell, 10, 1539–1550.Google Scholar
  90. 90.
    Kang, S. H., Sing, S., Kim, J. Y., Lee, W., Mulchandani, A., & Chen, N. (2007). Applied and Environmental Microbiology, 73, 6317–6320. doi:10.1128/AEM.01237-07.Google Scholar
  91. 91.
    Guo, J., Dai, X., Xu, W., & Ma, M. (2008). Chemosphere, 72, 1020–1026. doi:10.1016/j.chemosphere.2008.04.018.Google Scholar
  92. 92.
    Grill, E., Winnacker, E. L., & Zenk, M. H. (1986). FEBS Letters, 197, 115–120. doi:10.1016/0014-5793(86)80309-X.Google Scholar
  93. 93.
    Cazale, A. C., & Clemens, S. (2001). FEBS Letters, 507, 215–219. doi:10.1016/S0014-5793(01)02976-3.Google Scholar
  94. 94.
    Lee, S., & Korban, S. S. (2002). Planta, 215, 689–693. doi:10.1007/s00425-002-0793-6.Google Scholar
  95. 95.
    Zhang, H., Xu, W., Guo, J., He, Z., & Ma, M. (2005). Plant Science, 169, 1059–1065. doi:10.1016/j.plantsci.2005.07.010.Google Scholar
  96. 96.
    Ducruix, C., Junot, C., Fievet, J. -B., Villiers, F., Ezan, E., & Bourguignon, J. (2006). Biochimie, 88, 1733–1742. doi:10.1016/j.biochi.2006.08.005.Google Scholar
  97. 97.
    Gong, J. -M., Lee, D., Chen, A., & Schroeder, J. I. (2003). Proceedings of the National Academy of Sciences of the United States of America, 100, 10118–10123. doi:10.1073/pnas.1734072100.Google Scholar
  98. 98.
    Li, Y., Danker, O. P., Carreira, L., Smith, A. P., & Merger, R. B. (2006b). Plant Physiology, 141, 288–298. doi:10.1104/pp.105.074815.Google Scholar
  99. 99.
    Chen, A., Komives, E. A., & Schroeder, J. I. (2006). Plant Physiology, 141, 108–120. doi:10.1104/pp.105.072637.Google Scholar
  100. 100.
    Hirschi, K., Korenkov, V., Wilganowski, N., & GJ, W. (2000). Plant Physiology, 124, 125–133. doi:10.1104/pp.124.1.125.Google Scholar
  101. 101.
    Persans, M. W., Nieman, K., & Salt, D. E. (2001). Proceedings of the National Academy of Sciences of the United States of America, 98, 9995–10000. doi:10.1073/pnas.171039798.Google Scholar
  102. 102.
    Tong, Y. P., Kneer, R., & Zhu, Y. G. (2004). Trends in Plant Science, 9, 7–9. doi:10.1016/j.tplants.2003.11.009.Google Scholar
  103. 103.
    Krämer, U., Pickering, I. J., Prince, R. C., Raskin, I., & Salt, D. E. (2000). Plant Physiology, 122, 1343–1354. doi:10.1104/pp.122.4.1343.Google Scholar
  104. 104.
    Bidwell, S. D., Crawford, S. A., Woodrow, I. E., Sommer-Knudsen, J., & Marshall, A. T. (2004). Plant Cell & Environment, 27, 705–716. doi:10.1111/j.0016-8025.2003.01170.x.Google Scholar
  105. 105.
    Lu, Y. P., Li, Z. S., & Rea, P. A. (1997). Proceedings of the National Academy of Sciences of the United States of America, 94, 8243–8248. doi:10.1073/pnas.94.15.8243.Google Scholar
  106. 106.
    Ortiz, D. F., Kreppel, L., Speiser, D. M., Scheel, G., McDonald, G., & Ow, D. W. (1992). The EMBO Journal, 11, 3491–3499.Google Scholar
  107. 107.
    Ortiz, D. F., Ruscitti, T., McCue, K. F., & Ow, D. W. (1995). The Journal of Biological Chemistry, 270, 4721–4728. doi:10.1074/jbc.270.9.4721.Google Scholar
  108. 108.
    Salt, D. E., & Rauser, W. E. (1995). Plant Physiology, 107, 1293–1301.Google Scholar
  109. 109.
    Vatamaniuk, O. K., Bucher, E. A., Sundaram, M. V., & Rea, P. A. (2005). The Journal of Biological Chemistry, 280, 23684–23690. doi:10.1074/jbc.M503362200.Google Scholar
  110. 110.
    Rea, P. A., Li, Z. -S., Lu, Y. -P., & Drozdowicz, Y. M. (1998). Annual Review of Plant Physiology and Plant Molecular Biology, 49, 727–760. doi:10.1146/annurev.arplant.49.1.727.Google Scholar
  111. 111.
    Song, W. Y. (2003). Nature Biotechnology, 21, 914–919. doi:10.1038/nbt850.Google Scholar
  112. 112.
    Ghose, M., Shen, J., & Rosen, B. P. (1999). Proceedings of the National Academy of Sciences of the United States of America, 96, 5001–5006. doi:10.1073/pnas.96.9.5001.Google Scholar
  113. 113.
    Gueldry, O. (2003). European Journal of Biochemistry, 270, 2486–2496. doi:10.1046/j.1432-1033.2003.03620.x.Google Scholar
  114. 114.
    Mendoza-Cozatl, D. G., Rodriguez-Zavala, J. S., Rodriguez-Enriquez, S., Mendoza-Hernandez, G., Briones-Gallardo, R., & Moreno-Sanchez, R. (2006). The FEBS Journal, 273, 5703–5713. doi:10.1111/j.1742-4658.2006.05558.x.Google Scholar
  115. 115.
    Dameron, C. T., Reese, R. N., Mehra, R. K., & Kortan, A. R. (1989). Nature, 338, 596–597. doi:10.1038/338596a0.Google Scholar
  116. 116.
    Reese, R. N., White, C. A., & Wing, D. R. (1992). Plant Physiology, 98, 225–229. doi:10.1104/pp.98.1.225.Google Scholar
  117. 117.
    Stasdeit, H., Duhme, A. K., Kneer, R., Zenk, M. H., Hermes, C., & Nolting, H. -F. (1991). Journal of the Chemical Society. Chemical Communications, 16, 1129–1130. doi:10.1039/c39910001129.Google Scholar
  118. 118.
    Morelli, E., Cruz, B. H., Somovigo, S., & Scarano, G. (2002). Plant Science, 163, 807–813. doi:10.1016/S0168-9452(02)00216-9.Google Scholar
  119. 119.
    Perego, P., Weghe, J. V., Ow, D. W., & Howell, S. B. (1997). Molecular Pharmacology, 51, 12–18.Google Scholar
  120. 120.
    Speiser, D. M., Ortiz, D. F., Kreppel, L., & Ow, D. W. (1992). Molecular and Cellular Biology, 12, 5301–5310.Google Scholar
  121. 121.
    Juang, R. H., MacCue, K. F., & Ow, D. W. (1993). Archives of Biochemistry and Biophysics, 304, 392–401. doi:10.1006/abbi.1993.1367.Google Scholar
  122. 122.
    Harada, E., Yamaguchi, Y., Koizumi, N., & Hiroshi, S. (2002). Journal of Plant Physiology, 159, 445–448. doi:10.1078/0176-1617-00733.Google Scholar
  123. 123.
    Saito, K. (2004). Plant Physiology, 136, 2443–2450. doi:10.1104/pp.104.046755.Google Scholar
  124. 124.
    Sulfate uptake and assimilation. Pathway of sulfate assimilation in bacteria 2008. http://www.hort.purdue.edu/rhodcv/hort640/sulfate/su00003.htm. Accessed January 01, 2009.
  125. 125.
    Hunter, T. C., & Mehra, R. K. (1998). Journal of Inorganic Biochemistry, 69, 293–303. doi:10.1016/S0162-0134(98)00005-1.Google Scholar
  126. 126.
    Weghe, J. G. V., & Ow, D. W. (2008). Molecular Microbiology, 42, 29–36. doi:10.1046/j.1365-2958.2001.02624.x.Google Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  1. 1.Ecotechnology Laboratory, Department of Environmental ScienceG.B.Pant. University of Agriculture and TechnologyPantnagarIndia

Personalised recommendations