Applied Biochemistry and Biotechnology

, Volume 160, Issue 4, pp 1032–1046 | Cite as

A Techno-economic Analysis of Polyhydroxyalkanoate and Hydrogen Production from Syngas Fermentation of Gasified Biomass

  • DongWon Choi
  • David C. Chipman
  • Scott C. Bents
  • Robert C. Brown


A techno-economic analysis was conducted to investigate the feasibility of a gasification-based hybrid biorefinery producing both hydrogen gas and polyhydroxyalkanoates (PHA), biodegradable polymer materials that can be an attractive substitute for conventional petrochemical plastics. The biorefinery considered used switchgrass as a feedstock and converted that raw material through thermochemical methods into syngas, a gaseous mixture composed mainly of hydrogen and carbon monoxide. The syngas was then fermented using Rhodospirillum rubrum, a purple non-sulfur bacterium, to produce PHA and to enrich hydrogen in the syngas. Total daily production of the biorefinery was assumed to be 12 Mg of PHA and 50 Mg of hydrogen gas. Grassroots capital for the biorefinery was estimated to be $55 million, with annual operating costs at $6.7 million. With a market value of $2.00/kg assumed for the hydrogen, the cost of producing PHA was determined to be $1.65/kg.


Syngas fermentation Synthesis gas fermentation Polyhydroxyalkanoate PHA Techno-economic analysis Hydrogen ASPEN Plus Rhodosprillum rubrum 



This study was supported by the USDA under contract no. NRCS 68-3A75-3-151.


  1. 1.
    Brown, R. C. (2003). Biorenewable resources: Engineering new products from agriculture (1st ed.). Ames, IA: Iowa State Press.Google Scholar
  2. 2.
    Brown, R. C. (2007). Applied Biochemistry and Biotechnology, 137–140, 947–956. doi: 10.1007/s12010-007-9110-y.CrossRefGoogle Scholar
  3. 3.
    Bridgwater, A. V. (1995). Fuel and Energy Abstracts, 36, 269–269.Google Scholar
  4. 4.
    Do, Y. S., Smeenk, J., Broer, K. M., Kisting, C. J., Brown, R., & Heindel, T. J. (2007). Biotechnology and Bioengineering, 97, 279–286. doi: 10.1002/bit.21226.CrossRefGoogle Scholar
  5. 5.
    McKendry, P. (2002). Bioresource Technology, 83, 55–63. doi: 10.1016/S0960-8524(01)00120-1.CrossRefGoogle Scholar
  6. 6.
    Klasson, K. T., Ackerson, M. D., Clausen, E. C., & Gaddy, J. L. (1992). Enzyme and Microbial Technology, 14, 602–608. doi: 10.1016/0141-0229(92)90033-K.CrossRefGoogle Scholar
  7. 7.
    Stevens, D. J. (2001). Update and summary of recent progress. Gorden, CO: NREL.Google Scholar
  8. 8.
    Probstein, R. F., & Hicks, R. E. (1982). Synthetic fuels. New York, NY: McGraw-Hill.Google Scholar
  9. 9.
    Bredwell, M. D., Srivastava, P., & Worden, R. M. (1999). Biotechnology Progress, 15, 834–844. doi: 10.1021/bp990108m.CrossRefGoogle Scholar
  10. 10.
    Datar, R. P., Shenkman, R. M., Cateni, B. G., Huhnke, R. L., & Lewis, R. S. (2004). Biotechnology and Bioengineering, 86, 587–594. doi: 10.1002/bit.20071.CrossRefGoogle Scholar
  11. 11.
    Marchessault, R. H. (1996). Trends in Polymer Science (Regular Ed.), 4, 163–168.Google Scholar
  12. 12.
    Klasson, K., Gupta, A., Clausen, E., & Gaddy, J. (1993). Applied Biochemistry and Biotechnology, 39–40, 549–557. doi: 10.1007/BF02919017.CrossRefGoogle Scholar
  13. 13.
    Chiesa, P., Consonni, S., Kreutz, T., & Robert, W. (2005). International Journal of Hydrogen Energy, 30, 747–767. doi: 10.1016/j.ijhydene.2004.08.002.CrossRefGoogle Scholar
  14. 14.
    Choi, J., & Lee, S. Y. (1997). Bioprocess and Biosystems Engineering, 17, 335–342.Google Scholar
  15. 15.
    Cowger, J., Klasson, K., Ackerson, M., Clausen, E., & Caddy, J. (1992). Applied Biochemistry and Biotechnology, 34–35, 613–624. doi: 10.1007/BF02920582.CrossRefGoogle Scholar
  16. 16.
    Kapic, A., & Heindel, T. J. (2006). Chemical Engineering Research and Design, 84, 239–245. doi: 10.1205/cherd.05117.CrossRefGoogle Scholar
  17. 17.
    Kapic, A., Jones, S. T., & Heindel, T. J. (2006). Industrial & Engineering Chemistry Research, 45, 9150–9155. doi: 10.1021/ie060655u.CrossRefGoogle Scholar
  18. 18.
    Lysenko, S. G. (2006). MS thesis. Iowa State University, Ames, IA.Google Scholar
  19. 19.
    Nelson, N. A. (2006). MS thesis. Iowa State University, Ames, IA.Google Scholar
  20. 20.
    Perry, R. H., & Green, D. W. (1997). Perry’s chemical engineers’ handbook (7th ed.). New York, NY: McGraw-Hill.Google Scholar
  21. 21.
    Ritzert, J. A. (2004). MS thesis. Iowa State University, Ames, IA.Google Scholar
  22. 22.
    Spath, P., Aden, A., Eggeman, T., Ringer, M., Wallace, B., & Jechura, J. (2005). Biomass to hydrogen production detailed design and economics utilizing the Battelle Columbus laboratory indirectly-heated gasifier. Golden, CO: NREL.Google Scholar
  23. 23.
    Fogler, H. S. (2006). Elements of chemical reaction engineering, 4th ed. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  24. 24.
    Ramachandran, P. A., & Chaudhari, R. V. (1983). Three-phase catalytic reactors (vol. 2). New York, NY: Gordon and Breach.Google Scholar
  25. 25.
    Milne, T. A., Evans, R. J., & Abatzaglou, N. (1998). Biomass gasifier “tars”: Their nature, formation, and conversion. Golden, CO: NREL.Google Scholar
  26. 26.
    Zhang, R., Brown, R. C., Suby, A., & Cummer, K. (2004). Energy Conversion and Management, 45, 995–1014. doi: 10.1016/j.enconman.2003.08.016.CrossRefGoogle Scholar
  27. 27.
    Smith, W. F. (1993). Structure and properties of engineering alloys (2nd ed.). New York, NY: McGraw-Hill.Google Scholar
  28. 28.
    Gerngross, T. U. (1999). Nature Biotechnology, 17, 541–544. doi: 10.1038/9843.CrossRefGoogle Scholar
  29. 29.
    Hydrogen Posture Plan 2006. Retrieved 3 November 2008 from
  30. 30.
    Average Retail Price of Electricity to Ultimate Customers by End-Use Sector 2005. Retrieved 21 October 2008 from
  31. 31.
    Peters, M. S., Timmerhaus, K. D., & West, R. E. (2002). Plant design and economics for chemical engineers (5th ed.). Boston, MA: McGraw-Hill.Google Scholar
  32. 32.
    Ulrich, G. D. (1984). A guide to chemical engineering process design and economics. New York, NY: Wiley.Google Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • DongWon Choi
    • 1
  • David C. Chipman
    • 1
  • Scott C. Bents
    • 1
  • Robert C. Brown
    • 1
  1. 1.Center for Sustainable Environmental TechnologiesIowa State UniversityAmesUSA

Personalised recommendations